D Programming Language

The D Programming Language

"It seems to me that most of the "new" programming languages fall into one of two categories. Those from
academia with radical new paradigms and those from large corporations with a focus on RAD and the web.
Maybe its time for a new language born out of practical experience implementing compilers.” -- Michael

"Great, just what | need.. another D in programming.” -- Segfault

Thisisthe reference document for the D programming language. D was conceived in
December 1999 by myself as a successor to C and C++, and has grown and evolved with
helpful suggestions and critiques by my friends and colleagues. I've been told the usual, that
there's no chance for a new programming language, that who do | think | am designing a
language, etc. Take alook at the document and decide for yourself!

The D newsgroup in pewsdigrtatmars.comyserver is where discussions of this should go.
Suggestions, critici s kudos; framesetcare all welcome there.

Note: al D users agree that by downloading and using D, or reading the D specs, they will
explicitly identify any claims to intellectual property rights with a copyright or patent notice
in any posted or emailed feedback sent to Digital Mars.

-Walter

The D Programming Language

O ATz — 11
MVNBE IS D 2.ttt ettt e et e e et eesbtaesabeeeesteasasseasasseesaseeesaneeesnsenessenessesens 11
MY D72 ..ttt ettt e et eeeateeeeateeasteaanseeeanseeaanseeeanreeeanreeeanreeanreeanreearenens 11

eatures TO Keep From C/CH+ .. 12
EALUIES TO DIOP.....eiiiiieeiii ettt e et esbeeesbeeesnbeeesnreeeanreeenneeeans 13
VRO D 1S FOF oo, 14
MVNO D IS INOL FOT ..ttt e et e e eteeeeneeeeeneeseaneeesanseesreeesseeesnres 14

N ET e s xe i DN 15
Object Oriented PrOgramMIiNgcc.veieueeiueeereeireecieeiteeeteeeereeseeesreesseeesseesseessreesseesnnes 15
PPOQUCTIVITY ...ttt ettt e b et e et e st e eeeeneesreeneas 15
FUNCEIONS .o oo 17|
a2\ T PP 17
RESOUICE MANAGEIMENTeeiiieiieiciiiiieeee ettt eeeeeeeeenbbeeeeeesesesanrreeeeeesesesasnrreeeeeesessnnnne 18
PEITOIMMANCEveiiiiiiiiii ettt e et e e e e b et e e e eab e e e e esabaeeessaabreeesasreeeaas 18
RETTBDITY -.ovovoooeooooeoooeoooooeosoeosoosseossesssesosesooesseeeeeesseeeseeseeesereeeeseeeseeesseesseerseereeereees 19
S 20
ProjECE MANAOEIMENTcceeiiiiieiiieeeeiieeeeeteeeeeeeeeeeesesbeeesssesseresssenseeesassneeesssesseeeessssseees 21
S oo e N CIene) D 21
I I 23
Phases of Compilation...........oo i 23
0 U oIl I g OO 23
N0 OF ...ttt e e ettt e e e et e e e esabreeessanbreeesansreneeas 24
N0 OF LINE.....uiiieiii ittt e et e et e e et e e enbeeeenbeeesnbeeesnseeeasreesneeesnses 24
MVNITE SPBCE. ...ttt e et e et e et e e eneeenteeeneeenreeaneeereas 24
©0]1010 0100 | S PP OO PO PP OO P PP PP P O P PP PPPPPPPRTRRTN 24

Lo L LTS T T T TR T T 25
SO LIEEIAIS. ...ttt e e ettt e e e ettt e e eeneeesssssseeeesasnseeesssneeeessssseeeesessreresas 25
NEEGEN LITEIAIS ..ottt e et e e et e e nteeeneeereeeneas 27
FLOBEING LITEIAlSveecvveceieceeteeeeetee ettt ettt e et e et e e eneeeteeeneeebeeeneeenreesseas 28

) VO OIS .ttt ettt ettt ettt e s ettt e e st e s et e e st e e e eabb e e e e e e e s esnbnaeesanbbaeesanbrnnasas 29
LA 30
S0 1075 PP 31

Y 33
M OAUIE DECIAIALION ...ttt e e et e s saba e e e e anbeeaeas 33
MPOIT DECIAIALION ...ttt ettt e sebe e s sbeeesberesabeeessbeeeasbeeesabeesasseesasseesassesannns 34
5COPE ANAMOGUIES ... eveeeeeeeeeneeeeeeeeereeeneenereneeeeeeneeneeseeeens 34
Static CoNStruction and DESITUCKTION...............c.eveeeeeeeeeeeeeeeeesereeeeeerseeeeenserseraeeenseeseeeeseenens 35
Order Of StaliC CONSITUCTIONvvviiiiiiiie ittt e e e e e sbae e e s sabeeeeeebreeaeas 35
Order of Static Construction within aModule.............ccoccceeveeiiiiiiieicieciie e 35
Order Of StaliC DESLIUCTION ...ttt iiiee e s eette e s e siibeesssibreeesasseeesssbseresasssaeeasassrenasas 35
DL T L0 Y — 36
DECIAIraliON SYNEAXveeeeeieeeieeee ettt eete e et e e eeneeeebeeeenreeeenseeeesreeereeeenses 36
TYPE DEFINING ...ttt et ee et e ettt e et e e eseeeenseeeesseeeasseesaseeessenesnrenesnses 37
LY AN L= S T o PP 37

A L18S DECI AN A ONS ...kttt iit e et s e et s e sttt e esuseesseeesseseaaseseasseeeassessassessnseesaneeesareeesaris 37

Y= 39
BASIC DAlA TYPES.c..eviiiieetiieieeetieeeeetiieeeeeteeessseseeeessasseesssasssesesssssenesssassessssssssseessssseeesssmseees 39
DENVEA DAL TYPES.eeevieieeetieee ettt ettt e et e et e e et e ebeeeseeeaseesseeenseeaneeenseesneeenne 39

The D Programming Language

Eoser DEFINEA TYPES. ...ttt ettt et eteaeeeeseeneseeeneseenesenasesessesenseseneane 40
INEEY CONVEISIONSe.eveeeeeeeeeeeeeteeeeeeteesteeseesseesseenseeseesseensesseesseenseeseesseessesseesseesseeneesseeseen 40
MNPlICIT CONVEISIONSvviiiiiiieiieeeeteiee e ettt eeeeteeeeeseaseeessssseeesaassesessssseesssssssseeessssseeessnnees 40
NEEJEY PrOMOLIONScc.viieieieeiecieesteeteetees e eee st e steeee st esteeneesreenseeseesseenseeneesseenseeneesseenees 40
Usual ArithmetiC CONVEISIONS........c..oiveeieieiiieeieceeeee ettt see et e eneeenreeaneas 40
DL e (=T 41
PrODEMIES. ...ttt ettt et et eseeeetee et eseeeeseseseseaseseseseneeseseanesenseserenereneaee 42
Properties for INtegral Data TYPEScuvceeuiecsisesseesssseseesessesssesssssssssssessssssssssesssessssssessnes 42
Properties for FI0ating POINT TYPEScvovveeerererereeceererereeeeseererennnsnenennnessenerennenenes 42
ENHE PIODEITY ...ttt ettt e et e e et e e et e eenteeeenseeesseesaseeeeseeesnneeesnreeesrenesnses 42
BAEEETDULES ...ttt ettt ettt eaeae s teseteeeenenebeseneseeesesesenseneseterenssrnne 44
I Ty N T oW 45
A LTON ATETTDULE ...ttt e e e ettt e e eeabeeeeeannseeesssnssesessansreessassrensessnsens 45
D ePreCated ATITDULEoceieceeecee et e e ente e e sreeneesneenreeeeeneeneen 46
ProteCtion AITDULE...........c.veiiieiececeeee et ee e 46
O S N T 1= PP 46
OVENTIAE AITOULE ...ttt e eeeenreeenee 46
Stz Lo AN L] o8| (PO PP 47
ey N T STV 47|
EXIIESSIONS........ovieieieeieeeeeeeiseeeesetseseeseesssesaesesseseesessesssesesessesssenssnssesessssnsasenseressesssssnesesseseeseas 49
Eval UBETON OFAEY ...ttt ettt eteeeteeteeeeaeeseeeenseseesenseseeseneeseeseneens 51
DT L oo 0 51
ASSI ON EXITESSIONS ...ttt e e eeateeeeeeseeeessenseesesasssesessassessssenssssessnssseesssnssnsessnsees 51
AssSignMment OPErator EXPrESSIONS.........c.c.viueeirieieirieiiieeteisieiceeeieeeseeeseeieseseeesreneseeeeeanas 51
CONAItIONAl EXPIESSIONS.......ecviieiieieieeteeeeee ettt e et e et e ebeeeneeenreeeneeenne 52
OFOF EXPIESSIONSc.uvievieitieeteeetieeetieeteeeeteeetteeateeeseeeseesseeeseesseeenseeaseeanseesseeaseesseesnseesseesnne 52
ANAAND EXPrESSIONS.covieeeeiieieeeeeee ettt e et e et e st e esesneesreeneas 52
B i tWWi S8 EXPOIESSIONS ...ttt sb e et et e b 53
O T T==S oLy 53

D O EXPIESSIONS ...t eteeetieeeiteeeeateeeeseeesseeeanseeeanseeeanseeaasseseasseesasseessenessenesnses 53
AN EXPrESSIONS. .. 53
U T = == Lo T — 53
OENTITY EXPDIESSIONSeiiieeiieeeeeieeieeeitee e e eeteeeeseesteeeesssteeesaassseessasssessssssssesessssseseesssssesesssnsees 53
REGHONEI EXPIESSIONScoeuieeiieeteeiiteiieieteisiei et ettt seet e it st eae s e etesesneseneereesresenrenes 54
NEEGEN COMPAITSONS ...ttt etee et eetee et e eteeeteeeseeenseeaseeenseesseeanseesseeeseesseesnseessees 55
F10ating POINE COMPAINTSONS........ccuvieieieiiteeetieeteeetieeteeeteeeteeeteeeneeeeteeeseeeaseesseeeaseesseeeseessees 55

N EXITESSIONS ...ttt ettt et e e e et e se e et e ene e st e eeeeneenreeeeeneenees 56
S TE EXIDIESS ONS.......vvieiieiiieeeeiiee ettt ieeeeteteeeseaeeeessesseeessasssesesssneeeessanseesesasnseeessssseeessssneees 56
X S [A 57|
IVIUI EXPIESSIONS........veieitieeetieeetieeeteeeetteeeeateeeeteeeaseeessseeaasseeesnseseanseesansessasseesasseesssseesareneans 57
UNarY EXPIESS ONS. 57|
N S == 1T 58
TSt EXPIESSIONS ... et e e e eetteeeeesteeesessnseesssansseeesassssesessnsseeessenssesesanssrnees 58
POSETIX EXIIESSIONS ... ecuveeeeeeeeeteeeeesteesteeeeeseesteeseesseesseesesseessesneesseesseaseesseessesseesseessesneessennses 59
PrIMAIY EXDIESSIONS.viivieieieeetieeeeeteeete ettt e et et e et e eeseeeteesseeenreeaneeeseesreeenns 59
LT 59
S0 T PP PP PP PPPPTo 59
UL Lottt e oo e et e eareene e st et e eneeneeneeensereenseeneeneennenneeneenneaneenres 59
TRU I =X 59
FUNCE ON LITEIAIS ..ottt e et e e e sreeeeeneesneeeeeneesns 59
ASSENT EXPIESSIONS ...ttt ettt e e e s et e et e areenr e et e ereeneas 60

The D Programming Language

SEALEMIENESvcvceeeeeeetet ettt ettt et eteteaeenetebebeseseseteseseasenesebesenessreseserensseserenes 61
| aDEl |0 SEAIEMENSeeiiviiciie ettt e b e reeereeenreeereeeans 62
alLele S (=1 1= | PP PP PP PP PP PPPRPPI 62
EXPIESSION SEALEMENLccuviceeeieeieciecieee et et e et e e e steenteeaesseeaeeneesseesenneeaseensenneennen 63
DEClaratioN SEAEEMENTccuveiiieceeeeceeceee ettt e et e e e b e e eneeenreeereeenes 63
T SBOIMENT ...ttt et e et eete e et e eebeeeaseeaseesnseeeseeenseesseesnreeaseeanseesseesnreens 63
MVNIHTE SEAEEMIENT ...ttt e et et e et e e et e e et e e aneeereeereaenne 63
D O-WWhil© St EMENT ...ttt er et e st e et eeeareebeessseebeesnresnsesnsesseesnneenreesnns 64
SRS 1= A 64
SWITCR SEAEEIMENE.........eeieiicieeceecee ettt et e et e e e eereeenreebeeenreeaseeenreeareesnns 65
CONLINUE SEAEEIMENT ...ttt et e et e et e e e et e e et e ebeeeneeeaseeenreenneeenns 66
BIEAK SEAIEMENTovvoovoov oo ovesreoessssmsesseseeseeeseserseeseeseessesseeseeseessenseeseeseesenseeseeseserserseeen 67|
AU RS (S (| P PP PP PPPPPRPPP 67
(GOLO SLALEIMENL ... e e e e e e et e e et e e e ens e e e e e snseeeeeennnaeeeeannnneeeennnens 67
MVITN SEEEMIENE ...ttt et e et e et e e ereeereeaneeereesneeenes 68
SYNCAIONIZE SEAEEIMENTcveiiiiectie ettt e et e e etee et e eeaeeeereeeseeenbeeeneeeaseesneeenns 68
TTY SEBEEIMENL ...ttt et e st e et e eneeereeaneeeareeeneeereaenes 69
LAl = (= 1101 | OO TSP P PP OPPRPPPIR 69
YL E RSz 1T A 69
S LIRS = (< 1= | P 70

BATT@YS ...ttt ettt ettt eeeteteteaeseeesesesesesesebesenseseseseseneseseteserensasesesesenesaneterenssrne 72

éoi TS, oo oo oooovoessomsomoesseseeseeeeseessenseeeessensenseeseessensemseeseeseereeseseessensenseeeesensenseeeenn 72|
SEALTC ATTAYS ..t eeeie e e ettt e e eeteeeeseesseeessansseeesaassseessansesessansseeesasssseesssnsseseessssreeess 72
D T T T, 72
ATTAY DECIAIAIIONS ...ttt e e e e et e et e e ereeaseeeneeereeaneeenns 72
L2 o PP 73
ST LT PP 73
ATTQY COPRYINGeeeiieeeiiiiieeteiieseeeeeieesseseeeesessseeessssseesssssssesssasssesessssseessssmssssesssssseesssmsrsessssrees 74
L S Lo T — 74
ATTAY CONCALENAEION ...t etieeetieee e ee e e eetteeeeaeeesseeeeseeeanseeeasseesaseeesaseeesasenens 74
ATTAY OPEIBHTIONS......eeeeeeeeiee ettt et et ees e et e et e seeetesseesseeneesseenteeneesseensesnees 75
e e 76
A TTAY PrODEITIES ..ot e ettt e e e ettt e s sseeeeesasseeeesasseeessanssesessanseeesssnssessssnnrens 76
Setting DynamiC Array LENGENc.coiiioiiiicicee e 77
ATTaY BOUNAS ChECKING ...ttt e e enreeenee 78
ATTAY [NITTAIIZAHIONccuiiiiieceeecee ettt et e et e et eeereeareeebeeeseeereeaseeenreessensnns 78
Static INitialization Of SEAC AITAYS......c.ccveveevereeeeeteeieteeeeieeeeteteeeeteeeteteeeeteeeeteserereeeereneas 78
S IR VLD o 79
N XL =T 79
O INIOS. ...ttt ettt e ettt e et e ettt e et e e eateeeenteeeanteeeanreeenbreeanneeeanbeeeanreeeanreeeanreeennres 79
|A_s§roci BHVE ATTAYS ... 80
O =T — 81
Associative Array EXample: WOrd COUNLeeeeeeeeiiiiieiiiiieeiiieeeeeieie e e ssiveeeeeenreeeaas 81

ISIFUCES, UNIONS, ENUMS.........cuiiitiiiieiieteie ettt an e ee e nnene s 83

ISETUGCES, UNIONSv.vveeeeeeeeeeeeeeteeeeteeeeeeteeestesseeteenssenseeeseesssenssseseesesessssensesesessesensesenessesenseres 83
Static INitialiZatioN OF SEIUCES........cccveeiieciiece ettt ereeeereeeneas 83
Static INitialization Of UNIONSccoiiiiiiieiiiccee et et eeeenreeeneas 83

0 84
ENUM PrOPEITIEScoovvoveececeeeeeeveeeeeeeeeeeeeeeeveeeneeeerenenaenennerennanennenennanenennenennenenes 85

NItTAlIZAETON OF ENUMIS.....ccveiiiicceiecieece ettt e e e eereeeneeereeenees 85
ICIASSES. ...ttt ettt ettt eteteteteaeeteteteteseaseteseteseneesereteseneseneteberenesesererenenerererenes 86

The D Programming Language

FLElOS ...ttt et e et e e reeanteebeeareeereennen 87
S O S — 87
S0 U ok (o £ OO PO PPRPPPPP 88

P ESITUCLONSeeeeeeeeee et e e e e e et e e e et e e e e s ata e e e e saseeeeeennsaeeeeasaneeesanseneesannsnnaenn 89
SEAEIC CONSITUCKONS ...ttt e et e et eeteee et e eeateeeenseeeenreeeenseeeasseessseeeneeesnnes 90
SEALIC DESITUCTON ...ttt ettt et e eteeeteeseeenreeeseeeneeeseeenseeaseesneeenseesnnes 91
CIASS INVAITANESccviiciiiieciee ettt e et e et e e et e eeareeeeareeeesseeenseeeneeennnes 91

L L IS OO OO PP OO PP TP PP RPPPP 92
SISy A e o= o LT 92
C1ASS DEAIIOCAIONSeeeeeeveeeeeeteeeeet ettt e et e et et e et e et eeeseeereesneeenreeeneeereesses 93
AAULO CLASSES......cvviiiiiie ittt ettt ete et e e et eeett e e eteeeeteeeebeeeaaseeeasseeeanreeeasseessseesseeennres 93
NEEITACES ...ttt e e et e e e et e e e e st eaeeaateeeeeesteeeeaansaeaeeanseeeeeanneeeenanns 93
U Ol OIS ..ttt ettt ettt ettt e ettt ettt e ettt e et e eesseeesseeeasaeeenneeeassaeeenneeeannneeanseeenneeenneeenneeannneas 97
VITTUBE FUNCLIONS.viiiee ettt ettt et e e et saee e be e saeeeneesnneenbeesneeenbeenneas 97
NHNE FUNCHIONS.uiiieiiee ettt et e e et e e etteeeenteeeeseeeeenseeeaneeesneeesnseeesnnes 97
FUNCEION OVETOAMING.c.veiieieciieeie ettt ereeebeeeneeeereenneas 97
FUNCHION PalraMIELEY'S..........veiieiie ettt ettt e et e e et e et e e eareeeeareeeneeenanes 97

L OCAl Vaiahl €S ..ttt e e e e rreer e e ereesareeannesnrenareas 98
INESEET FUNCHONS ... e eeeeeeseeeesseseeesneeesseseseeseeeeseeseeeeeeseseeseeeeseesesseseeseeeeens 98
Delegates, Function Pointers, and DynamiC ClOSUIEScoooveeevveveverersreerensenae 101
OPErAOr OVEITOBMING.......c.cvvveveveeieeieieteteeeieeetetetee ettt eteeeeeeteteteeeesesetetereeeeseseseresessnesererenns 103
Unary Operator OVErI0adiNg............c.ooueeveueereeeetietieietieteeieeeteeeeeteeeeeereeteenereeteeeereereeneseenas 103
OVEr 0adabl € UNEIY OPEIGLOIS.coeeeeeeeeeeveeseeerseeeeenseeeeseseeeeseeeeseseeeseeessncsseeeeeeencecas 103
OV Ler e T aTe T =Y 00 = 103
EXAMPIES ...ttt et e e ereeereeaneeereeereeens 103
Binary Operator OVErlOating..............coeveveueeueeeuiieeeieiiteeeeseteeteeeeteeteeeeeseseeesseseeessessenns 103
Overloadabl e Binary OPEIaLOrS.cocuveeeiuieiiieeiieieeieeeie ettt sieeneeeneeseeeeeas 103
OVENTOAING == AN 1=ttt ee e e ettt e e e st easssnreeessenseeesesaneneess 105
Overloading <, <=, > aN0 S, 105
FULUNE DITECHIONS........c.vveeeeeeeeeeeeeeteeeeeeteeseeeeeseeseeeesensesseseseneseeesesssessenssreseeesnsseesesnssesssenes 106
ITEMPIAEES ...ttt et eteteteneeeteteseasesesetesensesssesesesensasesererensaseseserenas 107
S Lo NS e o L= T 108
ATOUMENT DEAUCKTION ...t e ettt e e eeteeesseaseeeessesseseesasnesssessssesessssseneesanns 109
VAIUE PAIraMELErS.........eecveeciee ettt ettt ettt et e s e et e e s ae e e teesaeesnbeesseesabeenbeesareeseesanenns 110
SPECI AT ZBEION ...ttt e et e e et e et e eeneeebeeareeereeareeenreens 110

L IMITBEIONS ...ttt e et et e e et e eebeeenseeaseeenseeeseeenseesseesnreesseeenreesseeensenns 110
OO T 111
IASSEIt COMIIAGEcecvieceeeeectsesees et st esseesecsesssessessessnsesesnsessnsesesnsessn st essnsessnsnsesnsesssnans 111
Pre anNd POSt COMIACES.ovoveeoveesssoeoeeeeseeeeeeoe e e seeeeenen s sesenenen e seesenenenseseeeeenensmnennenensnsen, 111
N, QUL @NA INNEITTANCE.eeiuiiiiieceeeceece ettt ee et eereeereeereeereesseesnreeas 113
CIASS INVAITANEScoviieiiiecciee et e et e et e et eeeteeeeateeeeareeeesseeeaneeeeneeesreeas 113
DEDUG AN VEISION.......ocviviieticteieeeteeteetee ettt eeteteeteeteseeteesesseseesessesseseesenseseesessensesesseneas 114
PIrEOEI NGO VEISIONSoeeeeeeeeeeeeeeeeeeseseeeeseenseseneeseeneseeneensnenesnenssnsnesesnenssesneseene 114
0= o= e T 115

D EDUG SEAEEIMENT ...ttt e et et eeeeesreeenteeereeasreenseeeneeens 115

V EISION SEALEMIENEoeiiiiiiiecie ettt et e et e e e teeeteeebeeenseeaseesnreeseesnreenseesneeans 116

D EDUG ATIITOULE........oeeeeee ettt eeea 116
VS ON AT UL, ettt et st et e et e eseesseeeaseeeneaasseesneeensaessnasaseeasnesaraans 117
Error HaNAIING TN Dvovevoceeeeeeeeeeeeeeeeseeeeseseeesnenesneseneseeeeseeseenesseseseeseeseseesnseeeeseens 119
The Error Handling ProbleMocuiiiciiiccicce e e e 119
The D Error Handling SOIULION.............coiiiiiieieeeeeeeee e 120

The D Programming Language

GADA0E COlBCHION..........vvevieieeeteeeeeeeete ettt ettt teteeneneteteteseeneneretesenenaserenas 122
How Garbage ColleCtion WOIKS............ocveiieiceeeeeeee et 123
nterfacing Garbage Collected Objects With Foreign Code..........cccocuiiiieiiniciicsiiiiceneas 123
Pointers and the Garbage COIlECIOrccveeeiiecececece e 123
Working with the Garbage COlECIONccveiuiiiiiiiiecieceeeecee e 124
N A e T e 125
Strings (and Array) COPY-ON-WITTEc.eeiuiieeiiieiieieeieeee et sneeeeas 125
Rz LI TP PP PPPPRPPRPTN 126
BMOON OPEIAIHONcvvceceeeeeeeeeeeeeeeeeeeeeeeeerereeeeeerereneeeeenerenneneenenennenennenennenenenen 126
LS I CS PP PPTPPPRP 126
REFEIENCE COUNTING.....ieieeieiieeeeee ettt et et e sr e et e aneesreeeeas 127
EXpIicit Class INStANCE ATTOCAHONcoooooooeoocoocooosoesoeooesscoonesseesnesessseesenesesseeeseesseree 127|

W R L S P PP PO PP UPPPPPPPPPRPPTR 129
RAII (Resource Acquisition IS TNItIaliZation)cceeeueeeereececieseececeeseeee e 130
Allocating Class INstances ON The SEACKvecvveeveeieceeeeceeecee e 130

[lO T e Mo T T 131
Floating Point Intermediate ValUES............c.oveeieeeiiiieieeeeee e 131
ComPlex and IMAGINAIY TYPES........coieeeeeiieeeiieieeeieeeeeeeeieeeeeseeeseseseeesssssseeessesereesesseeess 131
ROUNTING CONEIOToovooeeeceeeeeeeeeeeeeeeeveeeeeseeeeeerenee e enenennneenenennanenennenenneneneneanns 132
EXCEPLON FlAOSottt e ettt e et e eeaeeeesteeeesseeeseeesreeesrenesns 132
F10atiNg POINE COMPAITSONS.......ceeeieeeeeieeteee ettt sreeseeeeesreeseeeeeas 132

D X86 ININE ASSEMDIEN ..ottt ea et eeneneereerenea 133
T 133
eI L= L= o L 133
S PP PPPPP 134
NAKEO ...ttt ettt e et e are e teeneeereeteeneeereereeneeareenreenreas 134
Ob, dS, di, dI, Af, A0, JE.....c.ooeiieieieeeeee ettt eeeareenea 134
O OMES ...ttt bttt ettt eb bbb b e et et bbb nre e 134
S E oo 135
IODEIANGS..........covoeveeieeeieeeeeeeeeeeseeeeet st eeeetsereeeeesenseeseseesesseseesesseeassnsssessenesnesresssnsseesssnesrsssenes 135
OPENANA TYPES ...ttt et e e et e st e et e eseesneetesneesreeneeaneesseeseas 136
Struct/Union/Class MembDEr OFFSELScooocooooooeooscosiosessiosnesseoseesesseesseeesnsseees 137|
SPECIAl SYMIDOIS ...ttt e et e e e e eabeeeeeeaseeeesanreeessassreeesesseneeas 137
OPCOAES SUPPOITEMcuieeeiiitceieietieei ettt ettt en e seereeenas 137
MD OpPCOUES SUPPOITEA ...ttt e et e e eneeereesreeenraens 141

T A e Rre X 142
CAlING C FUNCHIONS.......iieieeeiee ettt st e et e eneesteeeeaneesseeneeas 142
SEOr0E AlLOCALION ...ttt sttt sb st sb s sb s s e et e b e b e b e 143
Data Type COMPATDITITYc.oveveveeeceeeeeereeeeeeeerereeeeeerereeeneeerererennneenerennenennenenenenenenes 143
CAllING PIINET() ittt e e et e e et eeeteeeenteeeeneeeenreesseeessenesnrenas 144
ISIPUCES AN UNTONS ...ttt ettt e et e esneeebeeeneeenreesneeereens 144

[A O L TO o O 145
POMalI Ity GUITE ... ittt e e et e s sresreereareene e esessesbesreabesreenesneans 146
O S o e e Y 146
EmMbedding D iNHTIVIL ...ttt e e e e e eeneeanreean 147
D RUNEIME IMOUEL ...ttt ea et e et e eneeneeeneasreeneeeneenes 148
ODJECE MOTE] ...ttt e st ee e st e eneeeneens 148
ATTAY IVTOOE] ...ttt et e e e ettt e e s seaseeessessseeesssnseeessssneeeessanreeessesrenesan 148

LTS S0 150
D RUNEIME LIDIAIY .ottt e et e e etee e et e eenteesenseesnseesnseeesnsenesnses 150
PhilOSODNY ...ttt ettt eteeeeneeeteseneeneneteberensenssererensanas 150

The D Programming Language

IMPOMtS ..o s 150|
Core D: Availableon all D implementalions..............ccveeeeeeseeceeeeeeeeeeeeeseseeeeas 151
Standard C: interface to C fUNCHIONSoiiiiiiiii e se e e se e e eneesseeas 151
Operating System and Hardware: platform SpecifiC..........ocvveeeveeeirecinsciscceeeene, 151

€001 01 = PP PPPPPPPPR 152

S0 PP PP 152

S T P P P PP PP PP PPPPPTPPP 152

0 (T PP P PP PPTPPPRPRPPRPTN 153

L1 154

LSO P PPPPPP 154
L o PSP P PP 155

NIOEN ..o eeereeeeeeseeeeeeeeees 157|

DI O ...ttt e ettt e e ettt e e e e eab e e e e e enbreeeeannberesenbeeeeeannbeeeeeannreeeeannreeeeeanrrreeesanes 160

ST LT LU= 160

BN L. et e e et beeeaabeeeat—eeetreeaabaeeabeeeanreeeanreeeanreeaanreeeanreeareeas 161
010 T PP PP PPPPPPPPPT 162

200 (o P PP PPPPPPRPPPRPPN 162

12012 o J T 163

ST [T 164

SIS PP PPTPP 165
RS20 1 Te TP PPPPPPOR 165
T R 166
SEOKING ...ttt e e e ettt e e eaateeeeeeasbeeesenbeeeeeanreeeseannreeesanrreeeeannreeeeeanrreeeas 167

ST TR 169
[TO COPY OF NOL 10 COPY2..vvvevreerereeeeerereteereeeseeseseseeesrenssesssenseesseessrenessesessssessesenessesens 169

SV A= 1 PP PPPP 171

ENFEAI ..ottt e et e e et e e e eate e e areeeabeeeereeeereeas 171

21D ettt ettt et ettt et e e nt—eeseeanereeeanreteeeanbereesanrteeeeannteseseanbeeeesanneeeesannneeesennnreeessanreeeesanns 172

ST [T Y 172

A7 173

Calling CONVENLIONS. ... 173

e e Y = e = o L= 173

DLLS (DYNAMIC LINK LIDIrAMTES) ..vveiiiieiiiiieiiiii e eteeesesveeeaessveesssenneeeesanes 174
MEMOIY ATTOCEIIONceeeitiiicieet et enen 175

ICOM PrOGIrAMMING.......c.oveveerieeerereeeerseeerereseersseesesesseneseesssensseeseesssesssseseesesessssesesesessesesseses 176

DR O I e U ¢ T 177
NS 179
Programming in D fOr C PrOGramMIMENS..........covcuerieectisssessescsssssesssssssssssssssssessssessssssessnsssans 180
GEetting the SIZE€ OF A TYPE......coouiiiiiieiieececeee e snens 181

Get the max and Min ValUES Of AtYPE........cccuieicuiiieiieeeie e eee et esreee s 181
PriMItVe TYPES . 181
Special Floating POINE VAIUESocveieeeieee et eeaeeta e sieeneeeneesneeeeas 182
Taking the Modulus of afloating PoINt NUMDESc.eeveeeueiiiiiciiiiieeiieceeiee e 182
Dealing with NAN's in floating point COMPAIES..........ccvcueevereieeseeieeeeeseeieeseeseeeneens 183
Assert's are a necessary part of any good defensive coding strategy.ccuue.......... 183
nitializing all elementSof anN arrayc.coueecvecieeeiece e 184

| 00PING trOUGN @N @ITAY ...t eeea 184
Creating an array of Variabl@ SIZe.. ... 184
BUTNG CONCALENAITONoooecveeeeeeerreeeeeeeeeereeeeereeereeeeeerereeeserenenennenneneneneenenennnes 185
FOrMAEtE PrINEINGiiiviiiieiicciie et eetee et e et e e et e e eteeeeseeeesseeeesseeeasseeeaseeesarenens 186
Forward referenCing FUNCHIONSuoviiieieeeseeee e 186

The D Programming Language

FUNCLiONS that NAVE NO AIQUIMENES ..o 18§|
|_abelled break's and CONLINUE'S.coeuveueiieieeeeieeeeeeeeeeeeee e eieeeeseeeeesreeneeeneens 187
Cle (e RS = (5 1[0 | PP PP PPPPPRPPPN 187
SIFUCE T80 NAIME SPACE.........eeieiieiiiieiieiestee e stee e st e esteeessteeesteeesbeeessseeessseesnseeesnseeesreeenas 188

L OOKING UD SETTNGS. ...ttt et e et e e eneeeteeeneeereesneeenseesneeens 188
Setting struct Member @ligNMENT..........c..cocuieiieeieece et e eeeereea 189
ANONYMOUS SETUCES @NA UNTONS........cieieieeeeeeeee et seeeeeas 189
Declaring struct types and Variables. ... er e 190
(Getting the offset of astruct MembEr. ..o 190
UNION TNITTAITZAETONS. ...t e e s e e e ereesseeseeneesreenseeneesseenseas 191
SIPUCE INITTAlIZALIONS.........eeceiecieceee et e et e et e e nbeeareesreeereens 191
N AT T2 T 191
ESCADEA SEHNG LITEIaAlS. ...ttt e e et e e e esbeeasasnsreeeeessreresesseneeas 192
ASCIH VS WIAE CRaraCLEN'S........ecveieeeiieieeiesieeteseesteeaesteesteeeesseesaeeneesseenseeneesseenseaneensens 192
Arrays that parallel an UMoocueiiiiieceeccec e 193
Creating @ NEW tYPEAEf D tYPE.........ccueeiiieeiieee ettt eee et etee et ereeereeas 193
COMPANTNG SEIUCES ...ttt e st eeesseeseeetesneeseeeeesneesseeeeas 194
COMPATTNG SETTNOS ...vviieieieieeeeeiieeeeteieeseeaeeeessssereessenseressessseeesessseresssssseeessessseeessmsreress 195
BOMTING BITAYSooeeeeeeeeeeeeeeeeeeeerereeeceeeveeeeeeeeeerenereenererenneneenenenanenennsnenenaneneenenneeenes 196

\V Olati | € MEMOIY GCCESS ..ottt eetee et e et e e et e e sbeeeenbeeesnseeeaseeesaseeens 196
SUING [HEralS . 196
S 197]
Programming in D fOr CAH+ PrOGIAMIMENS.........coveeeeeeeeeeeeeeeeeveeeeeeeeeereveeseseeseseeessnceeseseeeesnces 199
DEfINING CONSITUCTONS ..ottt eie et eeestee e eaesreeneeeneesseenseeseesseesesneeaseensens 199
Base Class iNTali ZAHONc..eeiuiiiiciieceecec et e e e esneeas 200
COMPAINTNG SETUCES ...ttt et et e et e eeteeenreeebeeenseesseesnseeeseeanseesseeenseens 200
Creating aNEW tYPEOE! T tYP ... o e 201
LS00 ST PO PP PPTPPPPRPR 202
O T oYL= (oo [T TR 203
Namespace USING AECIaralioNS..........c..eeccueeieuieieiieieiieeeiieeeieeeeeeeeeteeesreeeeneeeeaseeesreeeanns 204
RAII (Resource Acquisition IS INItialiZation)coeveveeiiieeiieieeeeeeeeeeeeeen 204
DYNAMIC CIOSUIES -......ooooocoooeooooocooosoossooseeeneseesseeseeesessseeeeeesesseeseeeseseeseeeseneeeseeseeneee 205
[THE C PreproCESSOr VEISUS Dooveeeeeeeeeeeeeeeeeeeeeveeeseeeeeeseeenseeenseneeesncesseseessnenssesnesesnees 207
LT LT S 207
a2 0 1210 (o PP PPPP 207
FOFA0MIBAPACK ...vveieveeeieceeeetie et e etee et e eeteeeteeeseeenseeeseeenseeaseesnseeseesnseeaseesnseeaseesnseenseessenns 208

AL 0 P PP PP 208
CONAItiONAl COMPIHBLIONcccuviieiieiiieeeeeiiieeeetiie e e eeteeeeeeeeereesessereesseneeeessesseeeesessseeeeas 212
O Te Y e o T e T 213
D 215
MVNITE SPBCE. ...ttt sttt e bt et ene e e e eeeaneeneeans 215
COMIMIBIES. ...ttt ettt e et e e et e e st e e eseeeeneeeeseeeeneeeaneeennreeean 215
INAMING CONVENTTIONS. ...t ieeteieeeeeiteeeeeeteeeessesseeessessreeessesseesesssseeeesessseeesemsserees 215

M EANINGIESS TYPE ATIBSES.ecueeiieeeeeesie e eeesteeesteesteeaesteesteeneesseentesneesseenseeseensennsens 216

D ECIAratiON SEYIE.....cceieeeceeeeeeeee et eeeeeea 216
OPErator OVEITOAOING.ccveiiiieiiieeiieeecciece et eee et eeteeereesreeeteeereeenreeaseeeneeens 216
HUNQGANTAN NOTATON ...ttt eeeesreenreeneens 216
X AMIPI € WC ...ttt e et e e s et eeeeeateeasasaseeasssnseeessannseeasannseesesannsseesssssneeesssnnsees 217
Compiler for D Programming LanQUABOEcceerueeuieieiieeiieeiiesieeeiesieesieeeesiee e eeesseenee e 219
LS PP PPTPPPRPS 219
REGUITEIMENES. ...ttt et e e e et e st e et e eneesreenteaneesneeeeas 219

The D Programming Language

Enstal [T T 219
G 10 L= 219
Compiler Arguments and SWITCES.........coocueiiiiiiiiiieeiii et eecee e e seeeeeeeanes 219
T e 220
ENVIrONMENt VariablES............coiiuuiiiiiiiiiiiiciiiic ettt a e e e e e s ebaeeeeaans 221
SC.ANI INIHAITZAHON FIlE........ccccveiiiiiii ittt eave e e eeneeas 221
BB, ..ottt e e et e e e e e e e e e e e e nr e e e nreeaneeas 221
FEOUDACK ...ttt ettt e e ettt e e eteeeeseeeenteeeenreeeaneeeeneeeanreeeanreeeanreeeanreras 221
ACKNOWI EAGEMENES ...ttt 222

10

The D Programming Language

Overview

What is D?

D isagenera purpose systems and applications programming
language. It is a higher level language than C++, but retains the
ability to write high performance code and interface directly with the
operating system API's and with hardware. D iswell suited to
writing medium to large scale million line programs with teams of
developers. D is easy to learn, provides many capabilitiesto aid the
programmer, and is well suited to aggressive compiler optimization
technol ogy.

D isnot a scripting language, nor an interpreted language. It doesn't
come with aVM, areligion, or an overriding philosophy. It'sa
practical language for practical programmers who need to get the job
done quickly, reliably, and leave behind maintainable, easy to
understand code.

D isthe culmination of decades of experience implementing compilers for many diverse
languages, and attempting to construct large projects using those languages. D draws
inspiration from those other languages (most especially C++) and tempersit with experience
and real world practicality.

Why D?
Why, indeed. Who needs another programming language?

The software industry has come along way since the C language was invented. Many new
concepts were added to the language with C++, but backwards compatibility with C was
maintained, including compatibility with nearly all the weaknesses of the original design.
There have been many attempts to fix those weaknesses, but the compatibility issue frustrates
it. Meanwhile, both C and C++ undergo a constant accretion of new features. These new
features must be carefully fitted into the existing structure without requiring rewriting old
code. The end result is very complicated - the C standard is nearly 500 pages, and the C++
standard is about 750 pages! The reality of the C++ compiler businessis that few compilers
effectively implement the entire standard.

C++ programmers tend to program in particular islands of the language, i.e. getting very
proficient using certain features while avoiding other feature sets. While the code is portable
from compiler to compiler, it can be hard to port it from programmer to programmer. A great
strength of C++ isthat it can support many radically different styles of programming - but in
long term use, the overlapping and contradictory styles are a hindrance.

It's frustrating that such a powerful language does not do basic things like resizing arrays and
concatenating strings. Y es, C++ does provide the meta programming ability to implement
resizable arrays and strings like the vector type in the STL. Such fundamental features,
however, ought to be part of the language. Can the power and capability of C++ be extracted,
redesigned, and recast into alanguage that is simple, orthogonal, and practical? Can it all be
put into a package that is easy for compiler writers to correctly implement, and which enables
compilersto efficiently generate aggressively optimized code?

11

The D Programming Language

Modern compiler technology has progressed to the point where language features for the
purpose of compensating for primitive compiler technology can be omitted. (An example of
thiswould be the 'register' keyword in C, a more subtle example is the macro preprocessor in
C.) We can rely on modern compiler optimization technology to not need language features
necessary to get acceptable code quality out of primitive compilers.

D aims to reduce software development costs by at least 10% by adding in proven
productivity enhancing features and by adjusting language features so that common, time-
consuming bugs are eliminated from the start.

Features To Keep From C/C++

The general look of D islike C and C++. Thismakes it easier to learn and port code to D.
Transitioning from C/C++ to D should feel natural, the programmer will not have to learn an
entirely new way of doing things.

Using D will not mean that the programmer will become restricted to a specialized runtime
vm (virtual machine) like the Javavm or the Smalltalk vm. Thereisno D vm, it'sa
straightforward compiler that generates linkable object files. D connects to the operating
system just like C does. The usual familiar tools like make will fit right in with D

devel opment.

« Thegeneral look and feel of C/C++ will be maintained. It will use the same algebraic
syntax, most of the same expression and statement forms, and the general layout.

« D programs can be written either in C style function-and-data or in C++ style obj ect-
oriented, or any mix of the two.

« The compilée/link/debug development model will be carried forward, although
nothing precludes D from being compiled into bytecode and interpreted.

« Exception handling. More and more experience with exception handling showsiit to
be a superior way to handle errors than the C traditional method of using error codes
and errno globals.

« Runtime Type ldentification. Thisis partially implemented in C++; in D it is taken
to its next logical step. Fully supporting it enables better garbage collection, better
debugger support, more automated persistence, etc.

« D maintains function link compatibility with the C calling conventions. This makes it
possible for D programs to access operating system API's directly. Programmers
knowledge and experience with existing programming API's and paradigms can be
carried forward to D with minimal effort.

« Operator overloading. D programs can overload operators enabling extension of the
basic types with user defined types.

« Templates. Templates are away to implement generic programming. Other ways
include using macros or having a variant data type. Using macros is out. Variants are
straightforward, but inefficient and lack type checking. The difficulties with C++
templates are their complexity, they don't fit well into the syntax of the language, all
the various rules for conversions and overloading fitted on top of it, etc. D offersa
much simpler way of doing templates.

« RAII (Resource Acquisition IsInitialization). RAIl techniques are an essential
component of writing reliable software.

« Down and dirty programming. D will retain the ability to do down-and-dirty
programming without resorting to referring to external modules compiled in a
different language. Sometimes, it's just necessary to coerce a pointer or dip into

12

The D Programming Language

assembly when doing systems work. D's goal is not to prevent down and dirty
programming, but to minimize the need for it in solving routine coding tasks.

Features To Drop

C source code compatibility. Extensions to C that maintain source compatiblity have
already been done (C++ and ObjectiveC). Further work in this area is hampered by so
much legacy code it is unlikely that significant improvements can be made.

Link compatibility with C++. The C++ runtime object model is just too complicated -
properly supporting it would essentially imply making D afull C++ compiler too.
The C preprocessor. Macro processing is an easy way to extend alanguage, adding in
faux features that aren't really there (invisible to the symbolic debugger). Conditional
compilation, layered with #include text, macros, token concatenation, etc., essentially
forms not one language but two merged together with no obvious distinction between
them. Even worse (or perhaps for the best) the C preprocessor isavery primitive
macro language. It's time to step back, look at what the preprocessor is used for, and
design support for those capabilities directly into the language.

Multiple inheritance. It's a complex feature of debatable value. It's very difficult to
implement in an efficient manner, and compilers are prone to many bugsin
implementing it. Nearly al the value of M1 can be handled with single inheritance
coupled with interfaces and aggregation. What's | eft does not justify the weight of Ml
implementation.

Namespaces. An attempt to deal with the problems resulting from linking together
independently devel oped pieces of code that have conflicting names. The idea of
modulesis simpler and works much better.

Tag name space. This misfeature of C iswhere the tag names of struct'sarein a
separate but parallel symbol table. C++ attempted to merge the tag name space with
the regular name space, while retaining backward compatibility with legacy C code.
Theresult is not printable.

Forward declarations. C compilers semantically only know about what has lexically
preceded the current state. C++ extends this alittle, in that class members can rely on
forward referenced class members. D takes thisto itslogical conclusion, forward
declarations are no longer necessary at all. Functions can be defined in a natural order
rather than the typical inside-out order commonly used in C programs to avoid writing
forward declarations.

Include files. A major cause of slow compiles as each compilation unit must reparse
enormous quantities of header files. Include files should be done asimporting a
symbol table.

Creating object instances on the stack. In D, all class objects are by reference. This
eliminates the need for copy constructors, assignment operators, complex destructor
semantics, and interactions with exception handling stack unwinding. Memory
resources get freed by the garbage collector, other resources are freed by using the
RAII features of D.

Trigraphs and digraphs. Unicode is the future.

Preprocessor. Modern languages should not be text processing, they should be
symbolic processing.

Non-virtual member functions. In C++, a class designer decides in advanceif a
function isto be virtual or not. Forgetting to retrofit the base class member function to
be virtual when the function gets overridden is acommon (and very hard to find)
coding error. Making all member functions virtual, and letting the compiler decide if

13

The D Programming Language

there are no overrides and hence can be converted to non-virtual, is much more
reliable.

Bit fields of arbitrary size. Bit fields are a complex, inefficient feature rarely used.
Support for 16 bit computers. No consideration is given in D for mixed near/far
pointers and all the machinations necessary to generate good 16 bit code. The D
language design assumes at least a 32 bit flat memory space. D will fit smoothly into
64 bit architectures.

Mutual dependence of compiler passes. In C++, successfully parsing the source text
relies on having a symbol table, and on the various preprocessor commands. This
makes it impossible to preparse C++ source, and makes writing code analyzers and
syntax directed editors painfully difficult to do correctly.

Compiler complexity. Reducing the complexity of an implementation makes it more
likely that multiple, correct implementations are available.

Distinction between . and ->. This distinction isreally not necessary. The . operator
servesjust aswell for pointer dereferencing.

Who D is For

Programmers who routinely use lint or similar code analysis tools to eliminate bugs
before the code is even compiled.

People who compile with maximum warning levels turned on and who instruct the
compiler to treat warnings as errors.

Programming managers who are forced to rely on programming style guidelinesto
avoid common C bugs.

Those who decide the promise of C++ object oriented programming is not fulfilled
due to the complexity of it.

Programmers who enjoy the expressive power of C++ but are frustrated by the need to
expend much effort explicitly managing memory and finding pointer bugs.

Projects that need built-in testing and verification.

Teams who write apps with amillion lines of codeinit.

Programmers who think the language should provide enough features to obviate the
continual necessity to manipulate pointers directly.

Numerical programmers. D has many features to directly support features needed by
numerics programmers, like direct support for the complex data type and defined
behavior for NaN's and infinities. (These are added in the new C99 standard, but not in
C++)

D'slexica analyzer and parser are totally independent of each other and of the
semantic analyzer. Thismeansit is easy to write simple tools to manipulate D source
perfectly without having to build afull compiler. It also means that source code can be
transmitted in tokenized form for specialized applications.

Who D is Not For

Redlistically, nobody is going to convert million line C or C++ programsinto D, and
since D does not compile unmodified C/C++ source code, D is not for legacy apps.
(However, D supports legacy C API's very well.)

Very small programs - a scripting or interpreted language like Python, tpty or
Perl islikely more suitable. m
Asafirst programming language - Basic or Javais more suitable for beginners. D
makes an excellent second language for intermediate to advanced programmers.

14

http://www.digitalmars.com/dscript/index.html

The D Programming Language

« Language purists. D isa practical language, and each feature of it is evaluated in that
light, rather than by an ideal. For example, D has constructs and semantics that
virtually eliminate the need for pointers for ordinary tasks. But pointers are still there,
because sometimes the rules need to be broken. Similary, casts are still there for those
times when the typing system needs to be overridden.

Major Features of D
This section lists some of the more interesting features of D in various categories.

Object Oriented Programming

Classes

D's object oriented nature comes from classes. The inheritance model is single inheritance
enhanced with interfaces. The class Object sits at the root of the inheritance heirarchy, so al
classes implement a common set of functionality. Classes are instantiated by reference, and so
complex code to clean up after exceptionsis not required.

Operator Overloading

Classes can be crafted that work with existing operators to extend the type system to support
new types. An example would be creating a bignumber class and then overloading the +, -, *
and / operators to enable using ordinary algebraic syntax with them.

Productivity

Modules

Source files have a one-to-one correspondence with modules. Instead of #include'ing the text
of afile of declarations, just import the module. There is no need to worry about multiple
imports of the same module, no need to wrapper header files with #i f ndef / #endi f or
#pragma once Kludges, etc.

Declaration vs Definition

C++ usually requires that functions and classes be declared twice - the declaration that goesin
the .h header file, and the definition that goesin the .c sourcefile. Thisisan error prone and
tedious process. Obviously, the programmer should only need to write it once, and the
compiler should then extract the declaration information and make it available for symbolic
importing. Thisis exactly how D works.

Example:
cl ass ABC
{
int func() { return 7; }
static int z = 7;
}
int q;

There is no longer aneed for a separate definition of member functions, static members,

externs, nor for clumsy syntaxes like:
int ABC. :func() { return 7; }
int ABC.:z = 7,

15

The D Programming Language

extern int q;

Note: Of course, in C++, trivial functionslike{ return 7; } arewritteninlinetoo, but
complex ones are not. In addition, if there are any forward references, the functions need to be

prototyped. The following will not work in C++:
cl ass Foo

{
b

cl ass Bar

int foo(Bar *c) { return c->bar; }

public:
int bar() { return 3; }

b

But the equivalent D code will work:
cl ass Foo

{
}

cl ass Bar

int foo(Bar ¢) { return c.bar; }

int bar() { return 3; }

Whether aD function isinlined or not is determined by the optimizer settings.

Templates

D templates offer a clean way to support generic programming while offering the power of
partial specialization.

Associative Arrays

Associative arrays are arrays with an arbitrary data type as the index rather than being limited
to an integer index. In essence, associated arrays are hash tables. Associative arrays make it
easy to build fast, efficient, bug-free symbol tables.

Real Typedefs

C and C++ typedefs are really type aliases, as no new typeis really introduced. D implements

real typedefs, where:
typedef int handl e;

really does create a new type handle. Type checking is enforced, and typedefs participate in
function overloading. For example:

int foo(int i);

i nt foo(handle h);

Bit type
The fundamental datatypeisthe bit, and D hasabi t datatype. Thisis most useful in creating
arrays of bits:

bit[] foo;

16

The D Programming Language

Functions

D has the expected support for ordinary functions including global functions, overloaded
functions, inlining of functions, member functions, virtual functions, function pointers, etc. In
addition:

Nested Functions

Functions can be nested within other functions. Thisis highly useful for code factoring,
locality, and function closure techniques.

Function Literals
Anonymous functions can be embedded directly into an expression.

Dynamic Closures

Nested functions and class member functions can be referenced with closures (also called
delegates), making generic programming much easier and type safe.

In, Out, and Inout Parameters

Not only does specifying this help make functions more self-documenting, it eliminates much
of the necessity for pointers without sacrificing anything, and it opens up possibilities for
more compiler help in finding coding problems.

Such makesit possible for D to directly interface to awider variety of foreign API's. There
would be no need for workarounds like "Interface Definition Languages”.

Arrays
C arrays have several faults that can be corrected:

« Dimension information is not carried around with the array, and so has to be stored
and passed separately. The classic example of this are the argc and argv parameters to
main(int argc, char *argv[]).

- Arraysare not first class objects. When an array is passed to a function, it is converted
to a pointer,even though the prototype confusingly saysit's an array. When this
conversion happens, al array type information gets |ost.

« Carrays cannot be resized. This means that even simple aggregates like a stack need
to be constructed as a complex class.

« C arrays cannot be bounds checked, because they don't know what the array bounds
are.

« Arrays are declared with the [] after the identifier. This leads to very clumsy syntax to
declare things like a pointer to an array:

. int (*array)[3];

In D, the[] for the array go on the left:

int[3] *array; declares a pointer to an array of 3 ints
long[] func(int x); declares a function returning an array of
| ongs

which is much simpler to understand.

17

The D Programming Language

D arrayscomein 4 varieties: pointers, static arrays, dynamic arrays, and associative arrays.

CNTEE

Strings
String manipulation is so common, and so clumsy in C and C++, that it needs direct support

in the language. M odern languages handle string concatenation, copying, etc., and so does D.
Strings are a direct consequence of improved array handling.

Resource Management

Garbage Collection

D memory allocation is fully garbage collected. Empirical experience suggests that alot of the
complicated features of C++ are necessary in order to manage memory deallocation. With
garbage collection, the language gets much simpler.

There's a perception that garbage collection isfor lazy, junior programmers. | remember when
that was said about C++, after all, there's nothing in C++ that cannot be donein C, or in
assembler for that matter.

Garbage collection eliminates the tedious, error prone memory allocation tracking code
necessary in C and C++. This not only means much faster devel opment time and lower
mai ntenance costs, but the resulting program frequently runs faster!

Sure, garbage collectors can be used with C++, and I've used them in my own C++ projects.
The language isn't friendly to collectors, however, impeding the effectiveness of it. Much of
the runtime library code can't be used with collectors.

For afuller discussion of this, see F;a-b@e-coHecﬂﬁr‘l]

Explicit Memory Management

Despite D being a garbage collected language, the new and del ete operations can be
overridden for particular classes so that a custom allocator can be used.

RAII

RAII is amodern software devel opment technique to manage resource allocation and
deallocation. D supports RAII in a controlled, predictable manner that is independent of the
garbage collection cycle.

Performance

Lightweight Aggregates
D supports simple C style struct's, both for compatibility with C data structures and because
they're useful when the full power of classesis overkill.

Inline Assembler

Device drivers, high performance system applications, embedded systems, and specialized
code sometimes need to dip into assembly language to get the job done. While D
implementations are not required to implement the inline assembler, it is defined and part of
the language. Most assembly code needs can be handled with it, obviating the need for
separate assemblersor DLL's.

18

The D Programming Language

Many D implementations will also support intrinsic functions analogously to C's support of
intrinsics for 1/0 port manipulation, direct access to special floating point operations, etc.

Reliability

A modern language should do all it can to help the programmer flush out bugs in the code.
Help can come in many forms; from making it easy to use more robust techniques, to
compiler flagging of obviously incorrect code, to runtime checking.

Contracts

Design by Contract (invented by B. Meyer) is arevolutionary technique to aid in ensuring the
correctness of programs. D's version of DBC includes function preconditions, function
postconditions, class invariants, and assert contracts. Seefor D's implementation.

Unit Tests

Unit tests can be added to a class, such that they are automatically run upon program startup.
Thisaidsin verifying, in every build, that class implementations weren't inadvertantly broken.
The unit tests form part of the source code for a class. Creating them becomes a natural part of
the class development process, as opposed to throwing the finished code over the wall to the
testing group.

Unit tests can be done in other languages, but the result is kludgy and the languages just aren't
accommodating of the concept. Unit testing is amain feature of D. For library functions it
works out great, serving both to guarantee that the functions actually work and to illustrate
how to use the functions.

Consider the many C++ library and application code bases out there for download on the web.
How much of it comes with *any* verification tests at all, let alone unit testing? Less than
1%? The usua practiceisif it compiles, we assume it works. And we wonder if the warnings
the compiler spits out in the process are real bugs or just nattering about nits.

Along with design by contract, unit testing makes D far and away the best language for
writing reliable, robust systems applications. Unit testing also gives us a quick-and-dirty
estimate of the quality of some unknown piece of D code dropped in our laps - if it has no unit
tests and no contracts, it's unacceptable.

Debug Attributes and Statements

Now debug is part of the syntax of the language. The code can be enabled or disabled at
compile time, without the use of macros or preprocessing commands. The debug syntax
enables a consistent, portable, and understandabl e recognition that real source code needs to
be able to generate both debug compilations and release compilations.

Exception Handling

The superior try-catch-finally model is used rather than just try-catch. There's no need to
create dummy objects just to have the destructor implement the finally semantics.

Synchronization

Multithreaded programming is becoming more and more mainstream, and D provides
primitives to build multithreaded programs with. Synchronization can be done at either the

method or the object level.
synchroni ze int func() { . }

19

The D Programming Language

Synchronized functions alow only one thread at atime to be executing that function.

The synchronize statement puts a mutex around a block of statements, controlling access
either by object or globally.

Support for Robust Techniques

« Dynamic arraysinstead of pointers

+ Reference variables instead of pointers

+ Reference objectsinstead of pointers

« Garbage collection instead of explicit memory management
« Built-in primitives for thread synchronization

« No macrosto inadvertently slam code

+ Inline functionsinstead of macros

« Vastly reduced need for pointers

+ Integral type sizes are explicit

« No more uncertainty about the signed-ness of chars

« No need to duplicate declarations in source and header files.
- Explicit parsing support for adding in debug code.

Compile Time Checks

+ Stronger type checking

« Explicitinitialization required

« Unused local variables not alowed

« No empty ; for loop bodies

« Assignments do not yield boolean results
+ Deprecating of obsolete API's

Runtime Checking

« assert() expressions

 array bounds checking

« undefined case in switch exception

+ out of memory exception

« In, out, and class invariant design by contract support

Compatibility

Operator precedence and evaluation rules

D retains C operators and their precedence rules, order of evaluation rules, and promotion
rules. This avoids subtle bugs that might arise from being so used to the way C does things
that one has a great deal of trouble finding bugs due to different semantics.

Direct Accessto C API's

Not only does D have data types that correspond to C types, it provides direct accessto C
functions. There is no need to write wrapper functions, parameter swizzlers, nor code to copy
aggregate members one by one.

20

The D Programming Language

Support for all C datatypes

Making it possible to interface to any C APl or existing C library code. This support includes
structs, unions, enums, pointers, and all C99 types. D includes the capability to set the
alignment of struct members to ensure compatibility with externally imposed data formats.

OS Exception Handling

D's exception handling mechanism will connect to the way the underlying operating system
handles exceptions in an application.

Uses Existing Tools

D produces code in standard object file format, enabling the use of standard assemblers,
linkers, debuggers, profilers, exe compressors, and other analyzers, as well aslinking to code
written in other languages.

Project Management

Versioning
D provides built-in support for generation of multiple versions of a program from the same
text. It replaces the C preprocessor #if/#endif technique.

Depr ecation

As code evolves over time, some old library code gets replaced with newer, better versions.
The old versions must be available to support legacy code, but they can be marked as
deprecated. Code that uses deprecated versions will be optionally flagged asillegal by a
compiler switch, making it easy for maintenance programmers to identify any dependence on
deprecated features.

No Warnings

D compilers will not generate warnings for questionable code. Code will either be acceptable
to the compiler or it will not be. Thiswill eliminate any debate about which warnings are
valid errors and which are not, and any debate about what to do with them. The need for
compiler warnings is symptomatic of poor language design.

Sample D Program (sieve.d)

/* Sieve of Eratosthenes prime numbers */
i mport c.stdio;
bit[8191] fl ags;

int main()
{ int i, count, prime, k, iter

printf("10 iterations\n");
for (iter 1; iter <= 10; iter++)

{ count = 0;
flags[] = 1;
for (i =0; i < flags.length; i++)
{ if (flags[i])
{ prime =i + i + 3;
k =i + prineg;

21

The D Programming Language

while (k < flags.|ength)

flags[k] = O;
k += prinmg;
}
count += 1;
}
}
printf ("\n%l prinmes", count);
return O;

22

The D Programming Language

L exical

In D, the lexical analysisisindependent of the syntax parsing and the semantic analysis. The
lexical analyzer splits the source text up into tokens. The lexical grammar describes what
those tokens are. The D lexical grammar is designed to be suitable for high speed scanning, it
has a minimum of special case rules, there is only one phase of trandation, and to make it
easy to write a correct scanner for. The tokens are readilly recognizable by those familiar with
Cand C++.

Phases of Compilation

The process of compiling is divided into multiple phases. Each phase has no dependence on
subsequent phases. For example, the scanner is not perturbed by the semantic analyser. This
separation of the passes makes language tools like syntax directed editors relatively easy to
produce.

1. ascii/wide char
The source file is checked to seeif it isin ASCII or wide characters, and the
appropriate scanner is loaded.

2. lexical analysis
The source fileis divided up into a sequence of tokens. Pragmas are processed and
removed.

3. syntax analysis
The sequence of tokensis parsed to form syntax trees.

4. semantic analysis
The syntax trees are traversed to declare variables, load symbol tables, assign types,
and in general determine the meaning of the program.

5. optimization

6. codegeneration

Source Text
D source text can be in one of the following formats:

. UTF-8
. UTF-16BE
. UTF-16LE
. UTF-32BE
. UTF-32LE

Note that UTF-8 is asuperset of traditional 7-bit ASCII. The source text is assumed to bein
UTF-8, unless one of the following BOMs (Byte Order Marks) is present at the beginning of
the source text:

23

The D Programming Language

Format BOM

UTF-8 EF BB BF

UTF-16BE | FE FF

UTF-16LE | FF FE

UTF-32BE | 00 00 FE FF

UTF-32LE | FF FE 00 00

UTF-8 none of the above

There are no digraphs or trigraphsin D. The source text is split into tokens using the maximal
munch technique, i.e., the lexical analyzer tries to make the longest token it can. For example
>> [saright shift token, not two greater than tokens.

End of File
EndOf Fi | e:
physical end of the file
\ u0000
\ uO01A

The source text is terminated by whichever comes first.

End of Line
EndCf Li ne:
\ u000D
\ uOOOA
\ u000D \ u0O0OA
EndO Fil e

There is no backslash line splicing, nor are there any limits on the length of aline.

White Space

Wi t eSpace:
Space
Space Wit eSpace

Space:
\ u0020
\ u0009
\ uo00B
\ uo0oC
EndCr Li ne
Comment

White space is defined as a sequence of one or more of spaces, tabs, vertical tabs, form feeds,
end of lines, or comments.

Comments

Comment :
/* Characters */
/'l Characters EndOf Li ne
/+ Characters +/

24

The D Programming Language

D has three kinds of comments;

1. Block comments can span multiple lines, but do not nest.
2. Line comments terminate at the end of the line.
3. Nesting comments can span multiple lines and can nest.

Comments cannot be used as token concatenators, for example, abc/ **/ def istwo tokens,
abc and def , not one abcdef token.

Identifiers

ldentifier:
IdentiferStart
IdentiferStart IdentifierChars

I dentifierChars:
| denti f er Char
IdentiferChar ldentifierChars

IdentifierStart:
Letter

| denti fierChar:
IdentiferStart
Digit

Identifiers start with aletter or _, and are followed by any number of letters, _ or digits.
Identifiers can be arbitrarilly long, and are case sensitive. Identifiers starting with __are
reserved.

String Literals
StringLiteral:
Si ngl eQuot edSt ri ng
Doubl eQuot edSt ri ng
EscapeSequence

Si ngl eQuot edSt ri ng:
Si ngl eQuot edCharacters

Si ngl eQuot edChar act er:
Char act er
EndOr Li ne

Doubl eQuot edSt ri ng:
Doubl eQuot edCharacters "

Doubl eQuot edChar act er:
Char act er
EscapeSequence
EndOf Li ne

EscapeSequence:

\ "
\?
\\
\a
\b

25

The D Programming Language

\ f

\n

\r

\t

\v

\ EndOFile

\'x HexDigit HexDigit

\ CctalDigit

\ CctalDigit CctalDigit

\ CctalDigit CctalDigit CctalDigit
\u HexDigit HexDigit HexDigit HexDigit

A string literal is either a double quoted string, a single quoted string, or an escape sequence.

Single quoted strings are enclosed by ". All characters between the " are part of the string
except for EndOfLine which is regarded as a single \n character. There are no escape
sequencesinside "

"hell o'
‘c:\root\foo. exe'
"ab\n' string is 4 characters, 'a', 'b', "\', 'n

Double guoted strings are enclosed by "". Escape sequences can be embedded into them with
the typical \ notation. EndOfLine is regarded as a single \n character.

“hel | 0"

"c:\\root\\foo0. exe"

"ab\ n" string is 3 characters, 'a', 'b', and a
i nef eed

"ab

" string is 3 characters, 'a', 'b', and a
i nef eed

Escape strings start with a\ and form an escape character sequence. Adjacent escape strings
are concatenated:

\n the |inefeed character

\ 't the tab character

\ " t he doubl e quote character
\ 012 oct al

\ x1A hex

\ul234 wchar character

\r\n carriage return, line feed

Escape sequences not listed above are errors.

Adjacent strings are concatenated with the ~ operator, or by simple juxtaposition:

"hello " ~ "world" ~ \n /1 fornms the string
"h','e "1, 1o, tw ottt d L i nef eed

Thefollowing are all equivalent:

"ab" "c"

"ab' 'c'

"a' "bc"

"a" ~ "b" ~ "c"
\ 0x61" bc"

26

The D Programming Language

Integer Literals

IntegerLiteral:
I nt eger
I nteger I ntegerSuffix

I nt eger:
Deci mal
Bi nary
Cct al
Hexadeci mal

I nt eger Suf fi x:
I
L
u
U
lu
Lu
U
LU
ul
uL
ul
UL

Deci nal :

0

NonZer oDi gi t

NonZer oDi git Deci nal
Bi nary:

Ob BinaryDigits

OB BinaryDigits

Cct al :
0 CctalDigits

Hexadeci nmal :
Ox HexDigits
0OX HexDigits

Integers can be specified in decimal, binary, octal, or hexadecimal.
Decimal integers are a sequence of decimal digits.

Binary integers are a sequence of binary digits preceded by a'0Ob'.
Octal integers are a sequence of octal digits preceded by a'0'.

Hexadecimal integers are a sequence of hexadecimal digits preceded by a'0x' or followed by
an'h'.

Integers can be immediately followed by one'l' or one 'u’ or both.

The type of the integer isresolved asfollows:

27

The D Programming Language

If it isdecimal it isthe last representable of ulong, long, or int.

If it isnot decimal, it is the last representable of ulong, long, uint, or int.
If it has the 'u’ suffix, it isthe last representable of ulong or uint.

If it has the 'l suffix, it isthe last representable of ulong or long.

If it hasthe'u’ and 'I' suffixes, it is ulong.

agbrwNE

Floating Literals

FloatLiteral:
Fl oat
Fl oat Fl oat Suf fi x
Fl oat | magi narySuffi x
Fl oat Fl oat Suffi x | magi narySuffi x

Fl oat :
Deci mal Fl oat
HexFl oat
Fl oat Suf fi x:
f
F
|
L

| magi narySuf fi x:
i
I

Floats can be in decimal or hexadecimal format, asin standard C.

Hexadecimal floats are preceded with a Ox and the exponent isap or P followed by a power
of 2.

Floats can be followed by onef, F, | or L suffix. Thef or F suffix meansitisafloat, and | or
L meansit is an extended.

If afloating literal isfollowed by i or I, thenitisanireal (imaginary) type.

Examples:
0x1. FFFFFFFFFFFFFp1023 /1 doubl e. max
Ox1p-52 /1 doubl e. epsilon
1.175494351e- 38F /] float.mn
6. 3i // idouble 6.3
6. 3fi /!l ifloat 6.3
6. 3LI !/l ireal 6.3

Itisan error if the literal exceeds the range of the type. It isnot an error if the literal is
rounded to fit into the significant digits of the type.

Complex literals are not tokens, but are assembled from real and imaginary expressionsin the
semantic analysis:

4.5 + 6. 2i /'l conpl ex nunber

28

The D Programming Language

Keywords

Keywords are reserved identifiers.
Keywor d:

abstract
alias

align

asm

assert

auto

bi t

body
br eak
byt e

case
cast
catch
cent
char

cl ass
cfl oat
cdoubl e
creal
const
conti nue

debug

def aul t

del egat e
delete
deprecat ed
do

doubl e

el se
enum
export
extern

fal se
final
finally
fl oat
for
function

super
nul |

new

short

i nt

| ong

i float

i doubl e

i real

if

swi tch
synchroni zed
return

goto

struct

29

The D Programming Language

Tokens

Token:

interface
i mport
static
override
in

out

i nout
private
protected
public

i nvari ant
r eal

this
t hr ow
true

try
t ypedef

ubyte
ucent
ui nt
ul ong
uni on
ushort

ver sion
voi d
vol atil e

wechar

whi | e
with

Identifier

StringLiteral
IntegerLitera
Fl oat Li teral

Keywor d
/
/| =

30

The D Programming Language

Pragmas

Pragmas are special token sequences that give instructions to the compiler. Pragmas are
processed by the lexical analyzer, may appear between any other tokens, and do not affect the
Syntax parsing.

Thereis currently only one pragma, the # i ne pragma.

Pragma

line Integer EndOfLi ne

line Integer Filespec EndOfLine
Fi | espec

' Characters "

This sets the source line number to Integer, and optionally the source file name to Filespec,
beginning with the next line of source text. The source file and line number is used for
printing error messages and for mapping generated code back to the source for the symbolic
debugging outpui.

31

The D Programming Language

For example:

int #line 6 "foo\bar"
X; /Il this is nowline 6 of file foo\bar

Note that the backslash character is not treated specially inside Filespec strings.

32

The D Programming Language

M odules

Modul e:
Modul eDecl ar ati on Decl Def s
Decl Def s

Decl Def s:
Decl| Def
Decl Def Decl Defs

Decl Def :
AttributeSpecifier
| mport Decl aration
EnunDecl| ar ati on
Cl assDecl arati on
I nterfaceDecl aration
Aggr egat eDecl arati on
Decl ar ati on
Constructor
Dest ruct or
I nvari ant
Uni ttest
St ati cConstruct or
St ati cDestructor
DebugSpeci fi cati on
Ver si onSpeci fication

Modules have a one-to-one correspondence with source files. The module name isthefile
name with the path and extension stripped off.

Modules automatically provide a namespace scope for their contents. Modules superficially
resemble classes, but differ in that:

« There'sonly oneinstance of each module, and it is statically allocated.

« Thereisno virtua table.

« Modules do not inherit, they have no super modules, etc.

+ Only one module per file.

« Module symbols can be imported.

« Modules are dways compiled at global scope, and are unaffected by surrounding
attributes or other modifiers.

Module Declaration

The ModuleDeclaration sets the name of the module and what package it belongs to. If
absent, the module name is taken to be the same name (stripped of path and extension) of the

source file name.
Modul eDecl ar ati on:
nodul e Modul eNane ;

Modul eNane:

I dentifier
Modul eNane . ldentifier

The Identifier preceding the rightmost are the packages that the module isin. The packages
correspond to directory namesin the source file path.

33

The D Programming Language

If present, the ModuleDeclaration appears syntactically first in the source file, and there can
be only one per sourcefile.

Example:
nodul e c. stdi o; /1 this is nobdule stdio in the c package

By convention, package and module names are all lower case. Thisis because those names
have a one-to-one correspondence with the operating system'’s directory and file names, and
many file systems are not case sensitive. All lower case package and module names will
minimize problems moving projects between dissimilar file systems.

Import Declaration

Rather than text include files, D imports symbols symbolically with the import declaration:
| mport Decl ar ati on:
i mport Mbdul eNaneLi st ;

Modul eNanelLi st :
Modul eNanme
Modul eNanme , Mbdul eNanelLi st

The rightmost Identifier becomes the module name. The top level scopein the moduleis
merged with the current scope.

Example:

i mport c.stdio; /1 inmport module stdio fromthe c package
i nport foo, bar; /1 inmport nmodul es foo and bar

Scope and Modules

Each module forms its own namespace. When a module is imported into another module, all
itstop level declarations are available without qualification. Ambiguities areillegal, and can
be resolved by explicitly qualifying the symbol with the module name.

For example, assume the following modules:

Modul e f oo

int x = 1;

int y=2;

Modul e bar

int y=3;

int z = 4;
then:

i mport foo;

d”=y; Il sets gq to foo.y
and:

i mport foo;

int y =05;

q =Yy, /1 local y overrides foo.y
and:

The D Programming Language

i mport foo;
i mport bar;
q =Yy, [l error: foo.y or bar.y?

and:
i mport foo;
i mport bar;
g = bar.y; /Il q set to 3

Static Construction and Destruction

Static constructors are code that gets executed to initialize a module or a class before the
main() function gets called. Static destructors are code that gets executed after the main()
function returns, and are normally used for releasing system resources.

Order of Static Construction

The order of static initialization isimplicitly determined by the import declarations in each
module. Each module is assumed to depend on any imported modules being statically
constructed first. Other than following that rule, there is no imposed order on executing the
modul e static constructors.

Cycles (circular dependencies) in the import declarations are allowed as long as not both of
the modules contain static constructors or static destructors. Violation of thisrule will result in
aruntime exception.

Order of Static Construction within a Module
Within amodule, the static construction occursin the lexical order in which they appear.

Order of Static Destruction

It is defined to be exactly the reverse order that static construction was performed in. Static
destructors for individual modules will only be run if the corresponding static constructor
successfully completed.

35

The D Programming Language

Declar ations

Decl ar ati on:
t ypedef Decl
al i as Decl
Decl

Decl :
const Decl
static Decl
final Decl
synchroni zed Decl
deprecat ed Decl
Basi cType Basi cType2 Decl arators
Basi cType Basi cType2 Functi onDecl ar at or

Decl ar at or s:
Decl ar at or
Decl arator , Declarators

Declaration Syntax
Declaration syntax generally reads |eft to right:

int x; /1l x is an int

int* x; /[l x is a pointer to int

int** x; /[l x is a pointer to a pointer to int

int[] x; /[l x is an array of ints

int*[] x; /1l x is an array of pointers to ints

int[]1* x; /Il x is a pointer to an array of ints
Arrays, when lexically next to each other, read right to | eft:

int[3] x; /[l x is an array of 3 ints

int[3][5] x; /[l x is an array of 3 arrays of 5 ints

int[3]*[5] x; [// x is an array of 5 pointers to arrays of 3 ints

Pointers to functions are declared as subdeclarations:
int (*x)(char);// x is a pointer to a function taking a char

ar gument
/1 and returning an int
int (*[] x)(char); /1l x is an array of pointers to functions
/1 taking a char argunent and returning an
i nt

C-style array declarations, where the [] appear to the right of the identifier, may be used as an

aternative:
int x[3]; /[l x is an array of 3 ints
int x[3][5]; /[l x is an array of 3 arrays of 5 ints
int (*x[5])[3];// x is an array of 5 pointers to arrays of 3 ints

In a declaration declaring multiple declarations, all the declarations must be of the same type:

int x,y; /[l x and y are ints

int* x,vy; /Il x and y are pointers to ints
int x,*y; /1 error, multiple types

int[] x,v; /1 x and y are arrays of ints
int x[1.,v; /1 error, multiple types

36

The D Programming Language

Type Defining
Strong types can be introduced with the typedef. Strong types are semantically a distinct type

to the type checking system, for function overloading, and for the debugger.
typedef int nyint;

void foo(int x) { . }
void foo(myint m { . }

nyi nt b
foo(b); /1 calls foo(nyint)

Typedefs can specify adefault initializer different from the default initializer of the
underlying type:

typedef int nyint = 7;

nyint m /[l initialized to 7

Type Aliasing
It's sometimes convenient to use an alias for atype, such as a shorthand for typing out along,

complex type like a pointer to afunction. In D, thisis done with the alias declaration:
al i as abc. Foo. bar nyint;

Aliased types are semantically identical to the types they are aliased to. The debugger cannot
distinguish between them, and there is no difference as far as function overloading is

concerned. For example:
alias int nyint;

void foo(int x) { . }
void foo(myint m { . } error, nultiply defined function foo

Type diases are equivalent to the C typedef.

Alias Declarations

A symbol can be declared as an alias of another symbol. For example:
i mport string;

alias string.strlen nylen;

ihi len = nmylen("hello"); /1 actually calls string.strlen()

The following alias declarations are valid:
templ ate Foo2(T) { alias Tt; }
i nstance Foo2(int) t1; // a TenplateAliasDecl aration
alias instance Foo2(int).t t2;
alias t1.t t3;
alias t2 t4;
alias instance Foo2(int) t5;

tl.t vi; /1 vl is type int
t2 v2; /[l v2 is type int
t3 v3; /1 v3 is type int
t4 v4; [l v4 is type int
t5.t vb; /1 v5 is type int

Aliased symbols are useful as a shorthand for along qualified symbol name, or as away to

redirect references from one symbol to another:
versi on (Wn32)

37

The D Programming Language

{
}

version (linux)

alias win32.foo nyfoo;

alias l|inux.bar mnyfoo;

}

Aliasing can be used to ‘import' a symbol from an import into the current scope:
alias string.strlen strlen

Note: Type aliases can sometimes |ook indistinguishable from alias declarations:
al i as foo. bar abc; /[l is it a type or a synbol?

The distinction is made in the semantic analysis pass.

38

The D Programming Language

Types

Basic Data Types

voi d no type

bi t single bit

byt e signed 8 bits

ubyte | unsigned 8 bits

short signed 16 bits

ushort |unsigned 16 bits

i nt signed 32 hits

ui nt unsigned 32 hits

| ong signed 64 bits

ulong | unsigned 64 bits

cent signed 128 bits (reserved for future use)

ucent unsigned 128 bits (reserved for future use)

fl oat 32 bit floating point

doubl e |64 bit floating point

largest hardware implemented floating point size (Implementation Note:
80 hitsfor Intel CPU's)

r eal

ireal afloating point value with imaginary type

i float |imaginary float

i doubl e | imaginary double

creal a complex number of two floating point values

cfloat |complex float

cdoubl e | complex double

char unsigned 8 bit ASCII

unsigned Wide char (Implementation Note: 16 bits on Win32 systems, 32

h . . .
wehar bits on linux, corresponding to C's wchar _t type)

The bit datatypeis specia. It means one binary bit. Pointers or referencesto a bit are not
allowed.

Derived Data Types

« pointer
. aray
« function

39

The D Programming Language

User Defined Types

. dias

« typedef
« enum

« Struct

e union

+ Cclass

Pointer Conversions

Casting pointers to non-pointers and vice versais not allowed in D. Thisisto prevent casual
manipulation of pointers as integers, as these kinds of practices can play havoc with the
garbage collector and in porting code from one machine to another. If it isreally, absolutely,
positively necessary to do this, use a union, and even then, be very careful that the garbage
collector won't get botched by this.

Implicit Conversions

D hasalot of types, both built in and derived. It would be tedious to require casts for every
type conversion, so implicit conversions step in to handle the obvious ones automatically.

A typedef can be implicitly converted to its underlying type, but going the other way requires
an explicit conversion. For example:

typedef int nyint;

int i;

nyint m

i =m Il K
m=i; /'l error
m= (nyint)i; [/ K

Integer Promotions
The following types are implicitly converted toi nt :
bi t
byt e
ubyte
short
ushort
enum

Typedefs are converted to their underlying type.

Usual Arithmetic Conversions

The usual arithmetic conversions convert operands of binary operators to a common type. The
operands must already be of arithmetic types. The following rules are applied in order:

Typedefs are converted to their underlying type.
If either operand is extended, the other operand is converted to extended.
Elseif either operand is double, the other operand is converted to double.
Elseif either operand isfloat, the other operand is converted to float.
Else the integer promotions are done on each operand, followed by:

1. If both are the same type, no more conversions are done.

agrwbdpE

40

The D Programming Language

2. If both are signed or both are unsigned, the smaller type is converted to the
larger.

3. If the signed typeis larger than the unsigned type, the unsigned typeis
converted to the signed type.

4. The signed typeis converted to the unsigned type.

Delegates

There are no pointers-to-membersin D, but a more useful concept called delegates are
supported. Delegates are an aggregate of two pieces of data: an object reference and a
function pointer. The object reference forms the this pointer when the function is called.

Delegates are declared similarly to function pointers, except that the keyword delegate takes
the place of (*), and the identifier occurs afterwards:

int function(int) fp; // fp is pointer to a function
int delegate(int) dg; // dg is a delegate to a function

The C style syntax for declaring pointers to functionsis also supported:
int (*fp)(int); /[l fp is pointer to a function

A delegateisinitialized analogously to function pointers:
int func(int);

fp = & unc; /[l fp points to func

class OB

{ int menmber(int);

}

OB o;

dg = &o. nenber; /1 dg is a delegate to object o and

!/l menber function nmenber

Delegates cannot be initialized with static member functions or non-member functions.

Delegates are called analogously to function pointers:

fp(3); /1 call func(3)
dg(3); /1 call o.menber(3)

41

The D Programming Language

Properties

Every type and expression has properties that can be queried:

i nt.size /1 yields

fl oat. nan /1 yields the floating point val ue

(float).nan /1 yields the floating point nan val ue

(3).size /1 yields 4 (because 3 is an int)

2.size /1l syntax error, since "2." is a floating point
nunber

int.init [l default initializer for int's

Properties for Integral Data Types

.init initializer (0)
.size size in bytes

. max maxi mum val ue

.mn m ni num val ue
.sign shoul d we do this?

Properties for Floating Point Types

.init initializer (NaN)

.size size in bytes

.infinity infinity val ue

. han NaN val ue

.sign 1if -, Oif +

. i snan 1if nan, O if not
.isinfinite 1if +infinity, 0 if not

. i snor mal 1if not nan or infinity, O if
.digits nunber of digits of precision
.epsilon smal | est increnent

.manti ssa nunber of bits in mantissa

. maxExp maxi num exponent as power of 2 (?)

. max
.mn

| ar gest
smal | est

r

epresent abl e val ue that's not
representable value that's not 0

infinity

init Property

Init produces a constant expression that is the default initializer. If applied to atype, itisthe
default initializer for that type. If applied to avariable or field, it isthe default initializer for
that variable or field. For example:

int a;

int b =1;

typedef int t = 2;

t c;

t d = cast(t)3;
int.init /Il is O
a.init /Il is O
b.init Il is 1
t.init Il is 2
c.init Il is 2
d.init /Il is 3
struct Foo

{
42

The D Programming Language

int a;

int b =7;
}
Foo.a.init /Il is O
Foo.b.init Il is 7

43

The D Programming Language

Attributes

AttributeSpecifier
Attribute :
Attribute Decl Def Bl ock

Attribut eEl seSpecifier
Attri but eEl se
Attri but eEl se Decl Def Bl ock
Attri but eEl se Decl Def Bl ock el se Decl Def Bl ock

Attribute:
Li nkageAttri bute
AlignAttribute
depr ecat ed
private
pr ot ect ed
public
export
static
final
override
abstract
const
auto

Attri but eEl se
DebugAttri bute
Versi onAttri bute

Decl Def Bl ock
Decl Def

{}
{ Decl Defs }

Attributes are away to modify one or more declarations. The general forms are:
attribute declaration; affects the declaration

attri bute: affects all declarations until the
next }
decl arati on;
decl arati on;

attri bute affects all declarations in the bl ock

{

decl arati on;
decl arati on;

}

For attributes with an optional else clause:
attri bute
decl arati on;
el se
decl arati on;

attri bute affects all declarations in the bl ock

{

44

The D Programming Language

decl arati on;
decl arati on;

}

el se

{ _
decl arati on;
decl arati on;

}

Linkage Attribute

Li nkageAttri bute:
extern
extern (LinkageType)

Li nkageType:
C
D
W ndows
Pascal

D provides an easy way to call C functions and operating system API functions, as
compatibility with both is essential. The LinkageType is case sensitive, and is meant to be
extensible by the implementation (they are not keywords). C and D must be supplied, the
others are what makes sense for the implementation. | mplementation Note: for Win32
platforms, Windows and Pascal should exist.

C function calling conventions are specified by:

extern (O):
int foo(); call foo() with C conventions

D conventions are:
extern (D):

or:
extern:

Windows API conventions are:
extern (W ndows):
void *Virtual Al l oc(
voi d *| pAddress,
ui nt dwsi ze,
uint flAllocationType,
uint flProtect

)

Align Attribute

AlignAttribute:
align
align (Integer)

Specifies the alignment of struct members. align by itself setsit to the default, which matches
the default member alignment of the companion C compiler. Integer specifies the alignment

45

The D Programming Language

which matches the behavior of the companion C compiler when non-default alignments are
used. A value of 1 meansthat no alignment is done; members are packed together.

Deprecated Attribute

It is often necessary to deprecate afeature in alibrary, yet retain it for backwards
compatiblity. Such declarations can be marked as deprecated, which means that the compiler

can be set to produce an error if any code refers to deprecated declarations:
depr ecat ed

{
}

I mplementation Note: The compiler should have a switch specifying if deprecated
declarations should be compiled with out complaint or not.

voi d ol dFoo();

Protection Attribute
Protection is an attribute that is one of private, protected, public or export.

Private means that only members of the enclosing class can access the member, or members
and functions in the same module as the enclosing class. Private members cannot be
overridden. Private module members are equivalent to static declarationsin C programs.

Protected means that only members of the enclosing class or any classes derived from that
class can access the member. Protected module members are illegal.

Public means that any code within the executable can access the member.

Export means that any code outside the executable can access the member. Export is
analogous to exporting definitions fromaDLL.

Const Attribute

const

The const attribute declares constants that can be evaluated at compile time. For example:
const int foo = 7;

const

doubl e bar = foo + 6;

Override Attribute

override

The override attribute applies to virtual functions. It means that the function must override a
function with the same name and parameters in a base class. The override attribute is useful
for catching errors when a base class's member function gets its parameters changed, and all

derived classes need to have their overriding functions updated.
cl ass Foo

{
int bar();

int abc(int x);

46

The D Programming Language

cl ass Foo2 : Foo

{
override
i nt bar(char c); /1 error, no bar(char) in Foo
int abc(int x); /1 ok
}
}

Static Attribute

static

The static attribute applies to functions and data. It means that the declaration does not apply
to aparticular instance of an object, but to the type of the object. In other words, it means

thereis no this reference.
cl ass Foo
{
static int bar() { return 6; }
int foobar() { return 7; }

}

Foo f;

Foo. bar () ; /'l produces 6

Foo.foobar(); // error, no instance of Foo
f.bar(); /1 produces 6;

f.foobar(); /'l produces 7;

Static functions are never virtual.
Static data has only one instance for the entire program, not once per object.

Static does not have the additional C meaning of being local to afile. Usethe private
attribute in D to achieve that. For example:

nodul e foo;
int x = 3; /1 x is gl obal
private int y = 4; /1l y is local to nodule foo

Static can be applied to constructors and destructors, producing static constructors and static
destructors.

Auto Attribute

auto

The auto attribute is used for local variables and for class declarations. For class declarations,
the auto attribute creates an auto class. For local declarations, auto implements the RAII
(Resource Acquisition Is Initialization) protocol. This means that the destructor for an object
isautomatically called when the auto reference to it goes out of scope. The destructor is called
even if the scope is exited via athrown exception, thus auto is used to guarantee cleanup.

Auto cannot be applied to globals, statics, data members, inout or out parameters. Arrays of
autos are not allowed, and auto function return values are not allowed. Assignment to an auto,

a7

The D Programming Language

other than initialization, is not allowed. Rationale: These restrictions may get relaxed in the
future if acompelling reason to appears.

48

The D Programming Language

EXpressions

C and C++ programmers will find the D expressions very familiar, with afew interesting
additions.

Expressions are used to compute values with aresulting type. These values can then be
assigned, tested, or ignored. Expressions can also have side effects.

Expr essi on:
Assi gnExpr essi on
Assi gnExpressi on , Expression

Assi gnExpr essi on:

Condi t i onal Expr essi on

Condi t i onal Expressi on = Assi gnExpression
Condi t i onal Expr essi on Assi gnExpr essi on
Condi t i onal Expressi on Assi gnExpr essi on
Condi t i onal Expressi on Assi gnExpr essi on
Condi t i onal Expressi on Assi gnExpr essi on
Condi t i onal Expr essi on Assi gnExpr essi on
Condi t i onal Expressi on &= Assi gnExpr essi on
Condi ti onal Expressi on | = Assi gnExpr essi on
Condi ti onal Expressi on "= Assi gnExpr essi on
Condi ti onal Expressi on ~= Assi gnExpr essi on
Condi ti onal Expressi on <<= Assi gnExpr essi on
Condi ti onal Expressi on >>= Assi gnExpr essi on
Condi ti onal Expressi on >>>= Assi gnExpr essi on

+

*
[T

o ~
‘H\

Condi ti onal Expr essi on:
O O Expr essi on
O O Expression ? Expression : Conditional Expression

O O Expressi on:
AndAndExpr essi on
AndAndExpressi on || AndAndExpression

AndAndExpr essi on:
O Expr essi on
O Expression &% O Expression

O Expr essi on:
Xor Expr essi on
Xor Expressi on | Xor Expression

Xor Expr essi on:
AndExpr essi on
AndExpressi on ~ AndExpr essi on

AndExpr essi on
Equal Expressi on
Equal Expressi on & Equal Expressi on

Equal Expr essi on:
Rel Expr essi on

Rel Expr essi on == Rel Expressi on
Rel Expr essi on ! = Rel Expressi on
Rel Expr essi on === Rel Expr essi on
Rel Expr essi on ! == Rel Expr essi on

Rel Expr essi on:

49

The D Programming Language

Shi ft Expr essi
Shi ft Expr essi
Shi ft Expr essi
Shi f t Expr essi
Shi f t Expr essi
Shi f t Expr essi
Shi ft Expr essi
Shi ft Expr essi
Shi ft Expr essi
Shi f t Expr essi
Shi f t Expr essi
Shi ft Expr essi
Shi ft Expr essi
Shi ft Expr essi

Shi f t Expr essi on:
AddExpr essi
AddExpr essi
AddExpr essi
AddExpr essi

on
on
on
on

AddExpr essi on:
Mul Expr ess
Mul Expr ess
Mul Expr ess
Mul Expr ess

on
on
on
on

Mul Expr essi on:
Unar yExpr essi
Unar yExpr essi
Unar yExpr essi
Unar yExpr essi

Unar yExpr essi on:

on
on
on
on
on
on
on
on
on
on
on
on
on
on

< Shi ft Expression
<= Shi ft Expr essi on
> Shi ft Expr essi on
>= Shi ft Expressi on
I <>= Shi ft Expression
I <> Shi ft Expression
<> Shi ft Expressi on
<>= Shi ft Expressi on
I > Shi ft Expression
I >= Shi ft Expression
I < Shi ft Expression
I <= Shi ft Expression
i n ShiftExpression

<< AddExpression
>> AddExpression
>>> AddExpr essi on

1

on
on
on
on

Mul Expr essi on
Mul Expr essi on
Mul Expr essi on

* Unar yExpr essi on
/' Unar yExpr essi on
% Unar yExpr essi on

Post fi xExpressi on
& Unar yExpr essi on
++ Unar yExpr essi on
-- Unar yExpressi on
* Unar yExpr essi on
- Unar yExpr essi on

Unar yExpr essi on

I Unar yExpr essi on

Unar yExpr essi on

del et e Unar yExpr essi on

NewExpr essi on

(Type) UnaryExpression

(Type)

Post f i xExpr essi on:

Identifier

Pri mar yExpr essi on

Post fi xExpressi on .
Post fi xExpressi on
Post fi xExpressi on
Post fi XxExpressi on
Post fi xExpressi on [

Pri mar yExpr essi on:
Identifier
this
super
nul |
true
fal se

I dentifier
++

(ArgunentlList)
Expressi on |

50

The D Programming Language

NunericLitera
StringLiteral
FunctionLitera
Assert Expr essi on
Type . ldentifier

Assert Expr essi on:
assert (Expression)

Ar gunent Li st :
Assi gnExpr essi on
Assi gnExpression , ArgunentlLi st

NewExpr essi on:
new Basi cType Stars [Assi gnExpression | Decl arator
new Basi cType Stars (ArgunentlList)
new Basi cType Stars
new (ArgunentList) BasicType Stars [Assi gnExpression]
Decl ar at or
new (ArgunentList) BasicType Stars (ArgunentlList)
new (ArgunentList) BasicType Stars

Stars
not hi ng
*

* Stars

Evaluation Order

Unless otherwise specified, the implementation is free to evaluate the components of an
expression in any order. It is an error to depend on order of evaluation when it is not

specified. For example, the following are illegal:
i = ++i;
c =a+ (a=Dhb;
func(++i, ++i);

If the compiler can determine that the result of an expression isillegally dependent on the
order of evaluation, it can issue an error (but is not required to). The ability to detect these
kinds of errorsisaquality of implementation issue.

Expressions
Assi gnExpression , Expression

The left operand of the, is evaluated, then the right operand is evaluated. The type of the
expression is the type of the right operand, and the result is the result of the right operand.

Assign Expressions
Condi ti onal Expressi on = Assi gnExpressi on

Theright operand isimplicitly converted to the type of the left operand, and assigned to it.
The result type is the type of the Ivalue, and the result value is the value of the Ivalue after the
assignment.

The |eft operand must be an Ivalue.

Assignment Operator Expressions

Condi ti onal Expressi on += Assi gnExpr essi on
Condi ti onal Expressi on -= Assi gnExpressi on

51

The D Programming Language

Condi ti onal Expressi on *= Assi gnExpr essi on
Condi ti onal Expressi on /= Assi gnExpressi on
Condi ti onal Expressi on % Assi gnExpressi on
Condi ti onal Expressi on &= Assi gnExpr essi on
Condi ti onal Expressi on | = Assi gnExpressi on
Condi ti onal Expressi on "= Assi gnExpr essi on
Condi ti onal Expressi on <<= Assi gnExpr essi on
Condi ti onal Expressi on >>= Assi gnExpr essi on
Condi ti onal Expressi on >>>= Assi gnExpressi on

Assignment operator expressions, such as:
aop=>b

are semantically equivalent to:
a=aophb

except that operand a is only evaluated once.

Conditional Expressions
O O Expression ? Expression : Conditional Expression

The first expression is converted to bool, and is evaluated. If it is true, then the second
expression is evaluated, and its result is the result of the conditional expression. If it isfalse,
then the third expression is evaluated, and its result is the result of the conditional expression.
If either the second or third expressions are of type void, then the resulting type is void.
Otherwise, the second and third expressions are implicitly converted to a common type which
becomes the result type of the conditional expression.

OrOr Expressions
AndAndExpr ession || AndAndExpression

The result type of an OrOr expression is bool, unless the right operand has type void, when
the result is type void.

The OrOr expression evaluates its left operand. If the left operand, converted to type bool,
evaluates to true, then the right operand is not evaluated. If the result type of the OrOr
expression is bool then the result of the expression istrue. If the left operand is false, then the
right operand is evaluated. If the result type of the OrOr expression is bool then the result of
the expression is the right operand converted to type booal.

AndAnd Expressions
O Expressi on &% O Expression

The result type of an AndAnd expression is bool, unless the right operand has type void, when
the result is type void.

The AndAnd expression evaluates its left operand. If the left operand, converted to type bool,
evaluates to false, then the right operand is not evaluated. If the result type of the AndAnd
expression is bool then the result of the expression isfalse. If the left operand is true, then the
right operand is evaluated. If the result type of the AndAnd expression is bool then the result
of the expression is the right operand converted to type bool.

52

The D Programming Language

Bitwise Expressions

Bit wise expressions perform a bitwise operation on their operands. Their operands must be
integral types. First, the default integral promotions are done. Then, the bitwise operation is
done.

Or Expressions
Xor Expressi on | Xor Expressi on

The operands are OR'd together.

Xor Expressions
AndExpr essi on ~ AndExpr essi on

The operands are XOR'd together.

And Expressions
Equal Expr essi on & Equal Expressi on

The operands are AND'd together.

Equality Expressions

Rel Expr essi on == Rel Expressi on
Rel Expression ! = Rel Expressi on

Equality expressions compare the two operands for equality (==) or inequality (!=). The type
of the result is bool. The operands go through the usual conversions to bring them to a
common type before comparison.

If they are integral values or pointers, equality is defined as the bit pattern of the type matches
exactly. Equality for struct objects means the bit patterns of the objects match exactly (the
existence of alignment holes in the objects is accounted for, usually by setting them all to 0
upon initialization). Equality for floating point typesis more complicated. -0 and +0 compare
asequal. If either or both operands are NAN, then both the == and != comparisons return
false. Otherwise, the bit patterns are compared for equality.

For complex numbers, equality is defined as equivalent to:
X.re ==y.re & x.im==y.im

and inequality is defined as equivalent to:

x.rel=y.re || x.im!=y.im

For class objects, equality is defined as the result of calling Object.eq(). Two null objects
compare as equal, if only oneis null they compare not equal.

For static and dynamic arrays, equality is defined as the lengths of the arrays matching, and
all the elements are equal.

Identity Expressions

Rel Expr essi on === Rel Expr essi on
Rel Expr essi on ! == Rel Expr essi on

53

The D Programming Language

The === compares for identity, and !== compares for not identity. The type of theresult is
bool. The operands go through the usual conversions to bring them to a common type before
comparison.

For operand types other than class objects, static or dynamic arrays, identity is defined as
being the same as equality.

For class objects, identity is defined as the object references are for the same object.

For static and dynamic arrays, identity is defined as referring to the same array elements.

Relational Expressions

Shi ft Expressi on < Shi ft Expression
Shi ft Expressi on <= Shi ft Expression
Shi ft Expressi on > Shi ft Expression
Shi ft Expressi on >= Shi ft Expressi on
Shi ft Expressi on ! <>= Shi ft Expressi on
Shi ft Expressi on ! <> Shi ft Expression
Shi ft Expressi on <> ShiftExpression
Shi ft Expressi on <>= Shi ft Expressi on
Shi ft Expression !> ShiftExpression
Shi ft Expressi on ! >= Shi ft Expressi on
Shi ft Expressi on ! < Shift Expression
Shi ft Expression ! <= Shi ft Expression
Shi ft Expression in ShiftExpression

First, the integral promotions are done on the operands. The result type of arelational
expression is bool.

For class objects, the result of Object.cmp() forms the left operand, and O forms the right
operand. The result of the relational expression (01 op 02) is:

(0l.cnp(02) op 0)
It isan error to compare objectsif oneis null.
For static and dynamic arrays, the result of the relational op is the result of the operator

applied to the first non-equal element of the array. If two arrays compare equal, but are of
different lengths, the shorter array compares as "less’ than the longer array.

The D Programming Language

Integer comparisons
Integer comparisons happen when both operands are integral types.

Integer comparison operators
Operator Relation

< less

> greater

<= less or equal

>= greater or equal
== equal

I= not equal

It is an error to have one operand be signed and the other unsigned for a<, <=, > or >=
expression. Use casts to make both operands signed or both operands unsigned.

Floating point comparisons
If one or both operands are floating point, then a floating point comparison is performed.

Useful floating point operations must take into account NAN values. In particular, arelational
operator can have NAN operands. The result of arelational operation on float valuesis|ess,
greater, equal, or unordered (unordered means either or both of the operandsisaNAN). That
means there are 14 possible comparison conditionsto test for:

55

The D Programming Language

Floating point comparison operators

Operator G‘Fﬁztr? .::ﬁ; Equal | Unordered | Exception Relation

== F F T F no equal

= T T = T no unordered, less, or
greater

> T F F F yes greater

>= T F T F yes greater or equal

< F T F F yes less

<= F T T F yes less or equal

I<>= F F F T no unordered

< T T F F yes less or greater

<>= T T T F yes less, equal, or greater

I<= T F F T no unordered or greater

< T = T T no unordered, greater, or
equal

I>= F T F T no unordered or less

I = T T T no unordered, less, or
equal

<> F F T T no unordered or equal

Notes:

1. For floating point comparison operators, (a'!op b) is not the same as!(aop b).
2. "Unordered" means one or both of the operandsisaNAN.
3. "Exception" meansthe Invalid Exception israised if one of the operandsisaNAN.

In Expressions
Shi ft Expression in ShiftExpression

An associative array can be tested to seeif an element isin the array:
int foo[char[]];

if ("hello" in foo)

The in expression has the same precedence as the relational expressions <, <=, etc.

Shift Expressions

AddExpr essi on << AddExpressi on
AddExpr essi on >> AddExpressi on
AddExpr essi on >>> AddExpressi on

56

The D Programming Language

The operands must be integral types, and undergo the usual integral promotions. The result
type isthe type of the left operand after the promotions. The result value is the result of
shifting the bits by the right operand's value.

<< isaleft shift. >> isasigned right shift. >>> is an unsigned right shift.

It'sillegal to shift by more bits than the size of the quantity being shifted:

int c;
c << 33; error

Add Expressions

Mul Expr essi on + Mul Expr essi on
Mul Expr essi on - Ml Expr essi on

If the operands are of integral types, they undergo integral promotions, and then are brought
to acommon type using the usual arithmetic conversions.

If either operand is a floating point type, the other isimplicitly converted to floating point and
they are brought to a common type viathe usual arithmetic conversions.

If the first operand is a pointer, and the second is an integral type, the resulting type is the type
of the first operand, and the resulting value is the pointer plus (or minus) the second operand
multiplied by the size of the type pointed to by the first operand.

For the + operator, if both operands are arrays of a compatible type, the resulting typeis an
array of that compatible type, and the resulting value is the concatenation of the two arrays.

Mul Expressions

Unar yExpr essi on * Unar yExpressi on
Unar yExpr essi on / Unar yExpressi on
Unar yExpr essi on % Unar yExpr essi on

The operands must be arithmetic types. They undergo integral promotions, and then are
brought to a common type using the usua arithmetic conversions.

For integral operands, the*, /, and % correspond to multiply, divide, and modulus operations.
For multiply, overflows are ignored and simply chopped to fit into the integral type. If the
right operand of divide or modulus operatorsis 0, a DivideByZeroException is thrown.

For floating point operands, the operations correspond to the IEEE 754 floating point
equivalents. The modulus operator only works with reals, it isillegal to useit with imaginary
or complex operands.

Unary Expressions

& Unar yExpr essi on
++ Unar yExpr essi on
- Unar yExpressi on
* Unar yExpr essi on
- Unar yExpr essi on
+ Unar yExpr essi on
I Unar yExpr essi on

57

The D Programming Language

~ Unar yExpr essi on

del et e Unar yExpressi on
NewExpr essi on

(Type) UnaryExpression
(Type) . ldentifier

New Expressions

New expressions are used to allocate memory on the garbage collected heap (default) or using
aclass specific allocator.

To allocate multidimensional arrays, the declaration reads in the same order as the prefix
array declaration order.

char[][] foo; [/ dynamic array of strings

%66 = new char[][30]; // allocate 30 arrays of strings

Cast Expressions

In C and C++, cast expressions are of the form:
(type) unaryexpression

There is an ambiguity in the grammar, however. Consider:
(foo) - p;

Isthis a cast of adereference of negated p to type foo, or isit p being subtracted from foo?
This cannot be resolved without looking up foo in the symbol tableto seeif itisatypeor a
variable. But D's design goal is to have the syntax be context free - it needs to be able to parse
the syntax without reference to the symbol table. So, in order to distinguish a cast from a
parenthesized subexpression, a different syntax is necessary.

C++ does this by introducing:
dynam c_cast (expr essi on)

which isugly and clumsy to type. D introduces the cast keyword:
cast(foo) -p; cast (-p) to type foo
(foo) - p; subtract p fromfoo

cast has the nice characteristic that it is easy to do atextua search for it, and takes some of the
burden off of the relentlessly overloaded () operator.

D differsfrom C/C++ in another aspect of casts. Any casting of a class reference to aderived
classreference is done with a runtime check to make sureit really is a proper downcast. This
means that it is equivalent to the behavior of the dynamic_cast operator in C++.

class A{ ... }
class B: A{ ... }

void test(A a, B h)
{

B bx = a; error, need cast

B bx = cast(B) a; bx is null if ais not a B

A ax = b; no cast needed

A ax = cast(A) b; no runtime check needed for upcast

58

The D Programming Language

}

D does not have a Java style instanceof operator, because the cast operator performs the same

function:
Java:
if (a instanceof B)

if ((B) a)

D

Postfix Expressions

Postfi xExpression . Identifier
Post fi xExpression -> ldentifier
Post fi xExpressi on ++

Post fi xExpression --

Post fi xExpressi on (ArgunentlList)
Post fi xExpressi on [Expression]

Primary Expressions

| dentifier

this

super

nul |

true

fal se
NurericLitera
StringLitera
Functi onLi teral
Assert Expr essi on
Type . ldentifier

this
Within a non-static member function, this resolves to areference to the object that called the
function.

super

Within a non-static member function, super resolves to areference to the object that called
the function, cast to its base class. It isan error if thereis no base class. super is not allowed
in struct member functions.

null

The keyword null represents the null pointer value; technically it is of type (void *). It can be
implicitly cast to any pointer type. The integer O cannot be cast to the null pointer. Nulls are
also used for empty arrays.

true, false
These are of type bit and resolve to values 1 and O, respectively.

Function Literals

Functi onLi t er al
function (ParaneterList) FunctionBody
function Type (Paraneterlist) FunctionBody
del egate (ParaneterList) FunctionBody

59

The D Programming Language

del egate Type (ParanmeterlList) FunctionBody

FunctionLiterals enable embedding anonymous functions directly into expressions. For

example:
int function(char c) fp;

void test ()
{

static int foo(char c) { return 6; }

fp = foo;
}

is exactly equivalent to:
int function(char c) fp;

void test ()
{

}

fp = function int(char ¢c) { return 6;};

And:
int abc(int delegate(long i));

void test ()
{ int b =3;
int foo(long c) { return 6 + b; }

abc(foo0);

}

is exactly equivalent to:
int abc(int delegate(long i));

void test ()
{ int b =3;

abc(del egate int(long ¢c) { return 6 + b; });
}

If the Type is omitted, it istreated as void. When comparing with hested functiong, the
function form is analogous to static or non-nested functions, and the delegate form is
analogous to non-static nested functions.

Assert Expressions

Assert Expr essi on:
assert (Expression)

Asserts evaluate the expression. If the result is false, an AssertException is thrown. If the
result istrue, then no exception isthrown. It isan error if the expression contains any side
effects that the program depends on. The compiler may optionally not eval uate assert
expressions a all. The result type of an assert expression isvoi d. Asserts are a fundamental
part of the[Design by Contract|support in D.

60

The D Programming Language

Statements

C and C++ programmers will find the D statements very familiar, with afew interesting
additions.
St at enent :
Label edSt at enent
Bl ockSt at ement
Expr essi onSt at enent
Decl ar ati onSt at enent
| f St at enent
DebugsSt at enent
Ver si onSt at enment
Whi | eSt at enrent
DoWhi | eSt at enent
For St at enent
Swi t chSt at ement
CaseSt at enent
Def aul t St at enent
Cont i nueSt at enent
Br eak St at enent
Ret ur nSt at enent
Got oSt at enent
W t hSt at enent
Synchr oni zeSt at enent
TrySt at enent
Thr owSt at enent
Vol ati | eSt at enent
Asntt at enent

Labeled Statementg
Block Statement

+ Expression Statement]
+ Declaration Statement]
 |f Statement|

* Debug Statement
* Mersion Statement|
* While Statemen
« Do-While Statement]
 [For Statemenﬂ

+ Bwitch Statement

+ Case Statement]

+ Default Statement]
 Continue Statement]

e Break Statemen
« Return Statement|
* [Goto Statement
e MWith Statement

* [Synchronize Statement]|
. Try_[Statement|

e [Throw Statement|

« \olatile Statement]

e Asm Statemenﬂ

61

The D Programming Language

Labelled Statements

Statements can be labelled. A label isan identifier that precedes a statement.
Label | edSt at ement :
Identifier ':' Statenent

Any statement can be |abelled, including empty statements, and so can serve asthe target of a
goto statement. Labelled statements can also serve as the target of a break or continue
Statement.

Labels are in a name space independent of declarations, variables, types, etc. Even so, labels
cannot have the same name as local declarations. The label name space is the body of the
function they appear in. Label name spaces do not nest, i.e. alabel inside ablock statement is
accessible from outside that block.

Block Statement

A block statement is a sequence of statements enclosed by { }. The statements are executed in

lexical order.
Bl ockSt at emrent :

{ }
{ StatenentList }

St at enent Li st :
St at enent
St at ement St at ement Li st

A block statement introduces a new scope for local symbols. A local symbol's name,

however, must be unique within the function.
void funcl(int x)

{ int x; /1 illegal, x is multiply defined in function scope
}
void func2()
L
int x;
{ int x; // illegal, x is multiply defined in function scope
}
}
void func3()
{
{ int x;
}
{ int x; // illegal, x is multiply defined in function scope
}
}
voi d func4()
{
{ int x;
}
{ X++; /1 illegal, x is undefined
}
}

62

The D Programming Language

Theideaisto avoid bugsin complex functions caused by scoped declarations inadvertantly
hiding previous ones. Local names should all be unique within afunction.

Expression Statement

The expression is evaluated.
Expr essi onSt at enent :
Expressi on ;

Expressions that have no affect, like (x + x), areillegal in expression statements.

Declaration Statement

Declaration statements declare and initialize variables.
Decl ar ati onSt at ement :
Type ldentifierlList ;

I dentifierList:
Vari abl e
Variable , ldentifierlList

Vari abl e:
I dentifier
Identifier = Assignhment Expression

If no AssignmentExpression isthereto initialize the variable, it isinitialized to the default
value for itstype.

If Statement

If statements provide simple conditional execution of statements.
| f St aterment :
if (Expression) Statenent
if (Expression) Statenent el se Statenent

Expression is evaluated and must have a type that can be converted to a boolean. If it'strue
theif statement istransferred to, else the else statement is transferred to.

The 'dangling else' parsing problem is solved by associating the else with the nearest if
Statement.

While Statement

While statements implement simple loops.
VWi | eSt at emrent :
while (Expression) Statenent

Expression is evaluated and must have a type that can be converted to a boolean. If it'strue
the statement is executed. After the statement is executed, the Expression is evaluated again,
and if true the statement is executed again. This continues until the Expression evaluates to
false.

63

The D Programming Language

A break statement will exit the loop. A continue statement will transfer directly to evaluationg
Expression again.

Do-While Statement

Do-While statements implement simple loops.
DoSt at enent :
do Staterment while (Expression)

Satement is executed. Then Expression is evaluated and must have atype that can be
converted to aboolean. If it's true the loop is iterated again. This continues until the
Expression evaluates to false.

A break statement will exit the loop. A continue statement will transfer directly to evaluationg
Expression again.

For Statement

For statements implement loops with initialization, test, and increment clauses.
For St at enent :
for (Initialize; Test; Increnment) Statenent

Initialize:
enpty
Expressi on
Decl arati on

Test :
enpty
Expressi on
I ncrenent:

enpty
Expressi on

Initializer is executed. Test is evaluated and must have atype that can be converted to a
boolean. If it's true the statement is executed. After the statement is executed, the Increment is
executed. Then Test is evaluated again, and if true the statement is executed again. This
continues until the Test evaluates to false.

A break statement will exit the loop. A continue statement will transfer directly to the
Increment.

If Initializer declares avariable, that variable's scope extends through the end of Statement.
For example:

for (int i =0; i < 10; i++)
foo(i);

isequivalent to:
{ int i;
for (i = 0; i < 10; i++)
foo(i);

The D Programming Language

}

Function bodies cannot be empty:

for (int i =0; i < 10; i++)
; /1 illegal
Useinstead:
for (int i =0; i < 10; i++)

{
}

The Initializer may be omitted. Test may aso be omitted, and if so, it istreated asif it
evaluated to true.

Switch Statement

A switch statement goes to one of a collection of case statements depending on the value of

the switch expression.
Swi t chSt at ement :
switch (Expression) Bl ockStatenent

CaseSt at errent :
case Expression : Statenent

Def aul t St at enent :
defaul t: Statenent

Expression is evaluated. The result type T must be of integral type or char[] or wchar[]. The
result is compared against each of the case expressions. If there is a match, the corresponding
case statement is transferred to.

If none of the case expressions match, and there is a default statement, the default statement is
transferred to.

If none of the case expressions match, and there is not a default statement, a SwitchException
isthrown. The reason for thisisto catch the common programming error of adding a new
value to an enum, but failing to account for the extra value in switch statements.

The case expressions must all evaluate to a constant value or array, and be implicitly
convertible to the type T of the switch Expression.

Case expressions must all evaluate to distinct values. There may not be two or more default
statements.

Case statements and default statements associated with the switch can be nested within block
statements; they do not have to be in the outermost block. For example, thisis allowed:

switch (i)
{
case 1:
{
case 2:
}
br eak;
}

65

The D Programming Language

Likein C and C++, case statements 'fall through' to subsequent case values. A break statement

will exit the switch BlockStatement. For example:
switch (i)

{

case 1:
X = 3;
case 2:
X = 4
br eak;
case 3:
X = 5;
br eak;

}
will set xto4ifiisl.

Note: Unlike C and C++, strings can be used in switch expressions. For example:

char[] nane;
.S\.Ni.tCh (name)

case "fred":
case "sally":

}

For applications like command line switch processing, this can lead to much more
straightforward code, being clearer and less error prone. Both ascii and wchar strings are
allowed.

I mplementation Note: The compiler's code generator may assume that the case statements
are sorted by frequency of use, with the most frequent appearing first and the least frequent
last. Although thisisirrelevant as far as program correctness is concerned, it is of
performance interest.

Continue Statement

A continue aborts the current iteration of its enclosing loop statement, and starts the next

iteration.
Cont i nueSt at enent :
conti nue;
continue ldentifier ;

continue executes the next iteration of itsinnermost enclosing while, for, or do loop. The
increment clause is executed.

If continue isfollowed by Identifier, the Identifier must be the label of an enclosing while, for,
or do loop, and the next iteration of that loop is executed. It isan error if thereis no such
statement.

Any intervening finally clauses are executed, and any intervening synchronization objects are
rel eased.

66

The D Programming Language

Note: If afinally clause executes areturn, throw, or goto out of the finally clause, the
continue target is never reached.

Break Statement

A break exits the enclosing statement.
Br eak St at enent :
br eak;
break ldentifier ;

break exits the innermost enclosing while, for, do, or switch statement, resuming execution at
the statement following it.

If break isfollowed by Identifier, the Identifier must be the label of an enclosing while, for,
do or switch statement, and that statement is exited. It isan error if there is no such statement.

Any intervening finally clauses are executed, and any intervening synchronization objects are
released.

Note: If afinally clause executes areturn, throw, or goto out of the finally clause, the break
target is never reached.

Return Statement

A return exits the current function and suppliesits return value.
Ret ur nSt at ement :
return;
return Expression ;

Expression isrequired if the function specifies areturn type that is not void. The Expressionis
implicitly converted to the function return type.

At least one return statement is required if the function specifies areturn type that is not void.
Expressionisillegal if the function specifies avoid return type.

Before the function actually returns, any enclosing finally clauses are executed, and any
enclosing synchronization objects are released.

The function will not return if any enclosing finally clause does areturn, goto or throw that
exitsthefinaly clause.

If there is an out postcondition (see design by contract), that postcondition is executed after
the Expression is evaluated and before the function actually returns.

Goto Statement

A goto transfers to the statement |abelled with Identifier.
CGot oSt at enent :

67

The D Programming Language

goto ldentifier ;

Any intervening finally clauses are executed, along with releasing any intervening
synchronization mutexes.

Itisillegal for agoto to be used to skip initializations.

With Statement

The with statement is away to simplify repeated references to the same object.
Wt hSt at enent :
with (Expression) Bl ockStatenent
with (Tenpl atel nstance) Bl ockSt at enent

where Expression evaluates to an Object reference. Within the with body the referenced

Object is searched first for identifier symbols. The with statement
wi th (expression)

{
i dent ;
}
is semantically equivaent to:

oj ect tnp;
tnp = expression;

trrp i dent;
}

Note that expression only gets evaluated once. The with statement does not change what this
or super refer to.

Synchronize Statement

The synchronize statement wraps a statement with critical section to synchronize access

among multiple threads.
Synchr oni zeSt at errent :
synchroni zed Statenent
synchroni zed (Expression) Statenent

synchronized alows only one thread at atime to execute Statement.

synchronized (Expression), where Expression evaluates to an Object reference, allows only
one thread at atime to use that Object to execute the Statement.

The synchronization gets released even if Statement terminates with an exception, goto, or
return.

Example:
synchronized { ... }

This implements a standard critical section.

68

The D Programming Language

Try Statement

Exception handling is done with the try-catch-finally statement.
TrySt at enent :
try Bl ockStatenent Catches
try Bl ockStatenent Catches finally Bl ockStatenent
try BlockStatenment finally Bl ockStatenent

Cat ches:
Last Cat ch
Cat ch
Cat ch Catches

Last Cat ch:
catch Bl ockSt at enent

Cat ch:
catch (Paraneter) Bl ockSt at enent

Parameter declares avariablev of type T, where T is Object or derived from Object. v is
initialized by the throw expression if T is of the same type or a base class of the throw
expression. The catch clause will be executed if the exception object is of type T or derived
fromT.

If just type T is given and no variable v, then the catch clauseis still executed.

Itisan error if any Catch Parameter type T1 hides a subsequent Catch with type T2, i.e. itis
an error if T1isthe same type as or abase class of T2.

LastCatch catches all exceptions.

Throw Statement

Throw an exception.
Thr owSt at enent :
t hr ow Expression ;

Expression is evaluated and must be an Object reference. The Object referenceis thrown as
an exception.

Volatile Statement

Do not cache values across volatile statement boundaries.
Vol ati | eSt at enent :
vol atil e Statenent

Satement is evaluated, and no common subexpressions or memory references cached in
registers are propagated either into it or out of it. Thisis useful for accessing memory that can
change asynchronously, such as memory mapped 1/0 or memory accessed by multiple
threads.

A volatile statement does not guarantee atomicity. For that, use synchronized statements.

69

The D Programming Language

Asm Statement

Inline assembler is supported with the asm statement:
Asnfst at enent :
asm{ }
asm { Asm nstructionList }

Asml nstructi onLi st:
Asml nstruction ;
Asm nstruction ; Asm nstructionLi st

An asm statement enables the direct use of assembly language instructions. This makesit easy
to obtain direct access to special CPU features without resorting to an external assembler. The
D compiler will take care of the function calling conventions, stack setup, etc.

The format of theinstructionsis, of course, highly dependent on the native instruction set of
the target CPU, and so isjmplementation defined| But, the format will follow the following
conventions:

« It must use the same tokens as the D language uses.
« The comment form must match the D language comments.
« Asminstructions are terminated by a ;, not by an end of line.

These rules exist to ensure that D source code can be tokenized independently of syntactic or
semantic analysis.

For example, for the Intel Pentium:

int x = 3;
asm

{
}

nov EAX, x; /1 load x and put it in register EAX

Inline assembler can be used to access hardware directly:
i nt get hardware()

{

asm

{
}

mov EAX, dword ptr 0x1234;
}
For some D implementations, such as atrandator from D to C, an inline assembler makes no

sense, and need not be implemented. The version statement can be used to account for this:
version (InlineAsm

asm

sone wor karound ..

70

The D Programming Language

71

The D Programming Language

Arrays

There are four kinds of arrays:

int* p; Pointers to data

int[3] s, Static arrays

int[] & Dynamic arrays

int[char[]] x; | Associative arrays (discussed |ater)

Pointers
int* p;

These are simple pointers to data, analogous to C pointers. Pointers are provided for
interfacing with C and for specialized systems work. There is no length associated with it, and
so thereis no way for the compiler or runtime to do bounds checking, etc., on it. Most
conventional uses for pointers can be replaced with dynamic arrays, out and i nout
parameters, and handles (references).

Static Arrays
int[3] s;

These are analogous to C arrays. Static arrays are distinguished by having alength fixed at
compiletime.

Dynamic Arrays
int[] a;

Dynamic arrays contain alength and a garbage collected pointer to the array data.

Array Declarations

There are two ways to declare arrays, prefix and postfix. The prefix form is the preferred
method, especially for non-trivial types.

Prefix Array Declarations
Prefix declarations appear before the identifier being declared and read right to left, so:

int[] a; /1 dynamic array of ints
int[4][3] b; /1 array of 3 arrays of 4 ints each
int[][5] c; /1 array of 5 dynamic arrays of ints.

int*[1*[3] d; // array of 3 pointers to dynanic arrays of pointers
toints
int[]* e; /1 pointer to dynamic array of ints

Postfix Array Declarations

Postfix declarations appear after the identifier being declared and read | eft to right. Each

group lists equivalent declarations:
/! dynamic array of ints
int[] a;
int a[];

72

The D Programming Language

/1 array of 3 arrays of 4 ints each
int[4][3] b;
int[4] b[3];
int b[3][4];

/1 array of 5 dynam c arrays of ints.
int[][5] c;
int[] c[5];
int c[5][];

/1 array of 3 pointers to dynamc arrays of pointers to ints
int*[]*[3] d;

int*[]* d[3];

int* (*d[3])[];

/1 pointer to dynamic array of ints
int[]* e;

int (*e[]);
Rationale: The postfix form matches the way arrays are declared in C and C++, and
supporting this form provides an easy migration path for programmers used to it.

Usage

There are two broad kinds of operations to do on an array - affecting the handle to the array,
and affecting the contents of the array. C only has operators to affect the handle. In D, both
are accessible.

The handleto an array is specified by naming the array, asinp, sor a

int* p;
int[3] s;
int[] a;
int* q;
int[3] t;
int[] b;
p = q; p points to the sanme thing q does.
p = s; p points to the first elenent of the array s.
p = a; p points to the first elenent of the array a.
s = error, since s is a conpiled in static
reference to an array.
a = p; error, since the length of the array pointed
to by p is unknown
a=s; ais initialized to point to the s array
a = b; a points to the sane array as b does
Slicing
Sicing an array means to specify a subarray of it. For example:
int[10] a; declare array of 10 ints
int[] b;
b =a[1l..3]; a[l..3] is a 2 elenent array consisting of

a[1] and a[2]
The[] is shorthand for adlice of the entire array. For example, the assignments to b:

73

The D Programming Language

int[10] a;
int[] b;

a
a[];
a[0 .. a.length];

b
b
b
are all semantically equivalent.

Slicing is not only handy for referring to parts of other arrays, but for converting pointersinto
bounds-checked arrays:

int* p;
int[] b = p[O0..8];

Array Copying

When the dlice operator appears as the Ivalue of an assignment expression, it means that the
contents of the array are the target of the assignment rather than areference to the array.
Array copying happens when the Ivalue is a dlice, and the rvalue is an array of or pointer to

the same type.
int[3] s;
int[3] t;
s[] =t; the 3 elements of t[3] are copied into s[3]
s[] =1t[]; the 3 elements of t[3] are copied into s[3]
s[1..2] =1t[0..1]; same as s[1l] = t[0]
s[0..2] =1t[1..3]; same as s[0] =1t[1], s[1l] =t[2]
s[0..4] =1t[0..4]; error, only 3 elenents in s
s[0..2] =1t; error, different lengths for |value and
rval ue

Overlapping copies are an error:

s[0..2] =s[1..3]; error, overlappi ng copy

s[1..3] =s[0..2]; error, overlappi ng copy
Disallowing overlapping makes it possible for more aggressive parallel code optimizations
than possible with the serial semantics of C.

Array Setting

If aslice operator appears as the Ivalue of an assignment expression, and the type of the
rvalue is the same as the element type of the Ivalue, then the lvalue's array contents are set to
thervalue.

int[3] s;

int* p;

s[] = 3; same as s[0] =3, s[1l]] =3, s[2] =3
p[0..2] = 3; same as p[0] =3, p[1l] = 3

Array Concatenation

The binary operator ~ is the cat operator. It is used to concatenate arrays.
int[] a;
int[] b;
int[]

(¢

a=>b~c; Create an array fromthe concatenation of the

74

The D Programming Language

b and ¢ arrays

Many languages overload the + operator to mean concatenation. This confusingly leads to,

does:
"10" + 3

produce the number 13 or the string "103" as the result? It isn't obvious, and the language
designers wind up carefully writing rules to disambiguate it - rules that get incorrectly
implemented, overlooked, forgotten, and ignored. It's much better to have + mean addition,
and a separate operator to be array concatenation.

Similarly, the ~= operator means append, asin:
a ~= b; a becones the concatenation of a and b

Concatenation always creates a copy of its operands, even if one of the operandsis a0 length

array, so:
a
a

b arefers tob
b ~ c[0..0] arefers to a copy of b

Array Operations
In general, (a[n..m] op €) is defined as:
for (i =n; i <m i++)
a[i] op e;

So, for the expression:
a[] = b[] + 3;

the result is equivalent to:
for (i =0; i < a.length; i++)
a[i] = b[i] + 3;

When more than one [] operator appears in an expression, the range represented by all must
match.

a[1l..3] = Db[] + 3; error, 2 elenents not sane as 3 el enents
Examples:
int[3] abc; /1 static array of 3 ints
int[] def ={ 1, 2, 3 }; /1 dynamic array of 3 ints
voi d di bb(int *array)
{
array[2]; /1 nmeans sane thing as *(array + 2)
*(array + 2); /1 get 2nd el ement
}
void diss(int[] array)
{
array[2]; /1 ok
*(array + 2); /1 error, array is not a pointer
}
void ditt(int[3] array)
{
array[2]; /1 ok
*(array + 2); /1 error, array is not a pointer

75

The D Programming Language

Rectangular Arrays

Experienced FORTRAN numerics programmers know that multidimensional "rectangular"”
arrays for things like matrix operations are much faster than trying to access them via pointers

to pointers resulting from "array of pointersto array" semantics. For example, the D syntax:
doubl e[][] matrix;

declares matrix as an array of pointersto arrays. (Dynamic arrays are implemented as pointers
to the array data.) Since the arrays can have varying sizes (being dynamically sized), thisis
sometimes called "jagged" arrays. Even worse for optimizing the code, the array rows can
sometimes point to each other! Fortunately, D static arrays, while using the same syntax, are

implemented as a fixed rectangular layout:
doubl e[3][3] matri x;

declares arectangular matrix with 3 rows and 3 columns, all contiguously in memory. In other

languages, this would be called a multidimensional array and be declared as:
doubl e matrix[3, 3];

Array Properties

Static array properties are:
size Returns the array length multiplied by the number of bytes per array element.

length | Returns the number of elementsin the array. Thisis afixed quantity for static arrays.

dup Create adynamic array of the same size and copy the contents of the array into it.

reverse | Reversesin place the order of the elementsin the array. Returns the array.

sort Sortsin place the order of the elementsin the array. Returns the array.

Dynamic array properties are:

size Returns the size of the dynamic array reference, which is 8 on 32 bit machines.

length | Get/set number of elementsin the array.

dup Create adynamic array of the same size and copy the contents of the array into it.

reverse | Reversesin place the order of the elementsin the array. Returns the array.

sort Sortsin place the order of the elementsin the array. Returns the array.

Examples:
p. | ength error, length not known for pointer
s.length conpile tinme constant 3
a.length runti ne val ue
p. dup error, length not known
s. dup creates an array of 3 elenents, copies
elements s into it
a. dup creates an array of a.length el enments, copies

elements of ainto it

76

The D Programming Language

Setting Dynamic Array Length

The. | engt h property of adynamic array can be set as the lvalue of an = operator:
array.length = 7;

This causes the array to be reallocated in place, and the existing contents copied over to the
new array. If the new array length is shorter, only enough are copied to fill the new array. If
the new array length is longer, the remainder isfilled out with the default initializer.

To maximize efficiency, the runtime always tries to resize the array in place to avoid extra
copying. It will always do acopy if the new size islarger and the array was not allocated via
the new operator or a previous resize operation.

This meansthat if thereisan array slice immediately following the array being resized, the
resized array could overlap the dlice; i.e.:

char[] a = new char[20];

char[] b = a[0..10];

char[] ¢ = a[10..20];

b.length = 15; // always resized in place because it is sliced
/1 froma[] which has enough nenory for 15 chars

b[11] = '"x"; /1 a[15] and c[5] are also affected

a.length = 1;

a.length = 20; // no net change to menory | ayout

c.length = 12; // always does a copy because c[] is not at the
/1 start of a gc allocation block

c[5] ="'y"; /1 does not affect contents of a[] or D[]

a.length = 25; // may or nmay not do a copy
a[3] ="'z"; /1 may or may not affect b[3] which still overlaps
/1 the old af 3]

To guarantee copying behavior, use the .dup property to ensure a unique array that can be
resized.

These issues aso apply to concatenting arrays with the ~ and ~= operators.

Resizing adynamic array is arelatively expensive operation. So, while the following method
of filling an array:

int[] array;

while (1)

{ c = getinput();
if ('c)

br eak;
array.length = array.length + 1
array[array.length - 1] = c;

}
will work, it will be efficient. A more practical approach would be to minimize the number of

resizes.
int[] array;

77

The D Programming Language

array.length = 100; /'l guess
for (i =0; 1; i++)
{ c = getinput();

if ('c)

br eak;
if (i == array. !l ength)
array.length = array.length * 2;
array[i] = c;

}

array.length = i;

Picking agood initial guessis an art, but you usually can pick a value covering 99% of the
cases. For example, when gathering user input from the console - it's unlikely to be longer
than 80.

Array Bounds Checking

It isan error to index an array with an index that is less than O or greater than or equal to the
array length. If an index is out of bounds, an ArrayBoundsError exception israised if detected
at runtime, and an error if detected at compile time. A program may not rely on array bounds
checking happening, for example, the following program isincorrect:

try
{
for (i =0; ; i++)
{
array[i] = 5;
}
catch (ArrayBoundsError)
{
/1 term nate | oop
}
The loop is correctly written:
for (i = 0; i < array.length; i++)
{

array[i] = 5;

I mplementation Note: Compilers should attempt to detect array bounds errors at compile

time, for example:
int[3] foo;
int x = foo[3]; /1 error, out of bounds

Insertion of array bounds checking code at runtime should be turned on and off with a
compile time switch.

Array Initialization

« Pointersareinitiaized to null.

« Static array contents are initialized to the default initializer for the array element type.
« Dynamic arrays areinitialized to having O el ements.

« Associative arrays are initialized to having O elements.

Static Initialization of Static Arrays
int[3] a=] 1:2, 31]; /1l a[0] =0, a[1] =2, a[2] =3

Thisis most handy when the array indices are given by enums:
78

The D Programming Language

enum Col or { red, blue, green };

int value[Color.max] = [blue:6, green:2, red:5];

If any members of an array are initialized, they al must be. Thisisto catch common errors
where another element is added to an enum, but one of the static instances of arrays of that
enum was overlooked in updating the initializer list.

Special Array Types

Arrays of Bits

Bit vectors can be constructed:
bit[10] x; /1 array of 10 bits

The amount of storage used up isimplementation dependent. | mplementation Note: on Intel

CPUs it would be rounded up to the next 32 bit size.
x. 1 ength /1 10, nunber of bits
X.size /1 4, bytes of storage

So, the size per element is not (x.size/ x.length).

Strings

Languages should be good at handling strings. C and C++ are not good at it. The primary
difficulties are memory management, handling of temporaries, constantly rescanning the
string looking for the terminating 0, and the fixed arrays.

Dynamic arraysin D suggest the obvious solution - astring isjust a dynamic array of
characters. String literals become just an easy way to write character arrays.

char[] str;
char[] strl = "abc";

Strings can be copied, compared, concatenated, and appended:
strl = str2
if (strl < str3)
func(str3 + str4);
str4 += strl;

with the obvious semantics. Any generated temporaries get cleaned up by the garbage
collector (or by using aloca()). Not only that, this works with any array not just a special
String array.

A pointer to achar can be generated:

char *p
char *p

&str[3]; /1 pointer to 4th el enent
str; /1 pointer to 1lst el enent

Since strings, however, are not 0 terminated in D, when transfering a pointer to astring to C,

add aterminating O:
str. append(0);

The type of a string is determined by the semantic phase of compilation. The type is one of:
ascii, wchar, ascii[], wchar[], and is determined by implicit conversion rules. If there are two
equally applicable implicit conversions, the result is an error. To disambiguate these cases, a
cast is approprate:

79

The D Programming Language

(wchar [])"abc"// this is an array of wchar characters

It isan error to implicitly convert a string containing non-ascii characters to an ascii string or
an ascii constant.

(ascii)"\ul234" [l error
Strings a single character in length can also be exactly converted to a char or wchar constant:
char c;
wchar u;
c ="b"; /1l ¢ is assigned the character 'b
u="»o"; /1 u is assigned the wchar character 'b
u="bc; /1 error - only one wchar character at a tinme
u="b"[0]; /1 u is assigned the wchar character 'b
u=\r; /1 uis assigned the carriage return wchar
char act er

printf() and Strings

printf() isa C function and is not part of D. printf() will print C strings, which are 0
terminated. There are two ways to use printf() with D strings. Thefirst isto add aterminating

0, and cast the result to a char*:
str.append(0);
printf("the string is "%'\n", (char *)str);

The second way is to use the precision specifier. The way D arrays are laid out, the length

comesfirst, so the following works:
printf("the string is '%*s'\n", str);

In the future, it may be necessary to just add a new format specifier to printf() instead of
relying on an implementation dependent detail.

Associative Arrays

D goes one step further with arrays - adding associative arrays. Associative arrays have an
index that is not necessarilly an integer, and can be sparsely populated. The index for an
associative array is called the key.

Associative arrays are declared by placing the key type within the [] of an array declaration:

int[char[]] b; /] associative array b of ints that are

/1 indexed by an array of characters
b["hello"] = 3; /1 set value associated with key "hello" to 3
func(b["hello0"]); /'l pass 3 as paranmeter to func()

Particular keysin an associative array can be removed with the delete operator:
delete b["hell 0"];

This confusingly appears to delete the value of b["hello"], but does not, it removes the key
"hello" from the associative array.

The InExpression yields a boolean result indicating if akey isin an associative array or not:

if ("hello" in b)

80

The D Programming Language

Key types cannot be functions or voids.

Properties
Properties for associative arrays are:

size |Returnsthe size of the reference to the associative array; it istypically 8.

Returns number of valuesin the associative array. Unlike for dynamic arrays, it is

length read-only.

keys | Returns dynamic array, the elements of which are the keysin the associative array.

values | Returns dynamic array, the elements of which are the values in the associative array.

Reorganizes the associative array in place so that lookups are more efficient. rehash is
rehash | effective when, for example, the program is done loading up a symbol table and now
needs fast lookupsin it. Returns areference to the reorganized array.

Associative Array Example: word count

i mport stdio; [l Coprintf()
i mport file; /I Dfile I/0O
int min (char[][] args)
{
int word_total
int line total;
int char_total
int[char[]] dictionary;
printf(" lines wor ds bytes file\n");
for (int i =1; i < args.length; ++i) // program argunents
{
char[] input; [l input buffer
int went, | _cnt, c_cnt; /!l word, line, char counts
int inword;
int wstart;
input = File.read(args[i]); /1 read file into
i nput[]
for (int j =0; j < input.length; j++)

{ char c;

c =input[j];

if (c =="\n")
++| _cnt;
if (c >="0" & ¢ <= "9")
{
}

else if (c >="a" && ¢ <= "z" ||
c > "A" && c <= "Z")

{
if (!inword)
{
wstart = j;
inword = 1;
++w _cnt;
}
}

81

The D Programming Language

else if (inword)

{ char[] word = input[wstart .. j];
di cti onary[word] ++; /1 increnment count for
wor d
i nmord = 0;
}
++c_cnt;
if (inword)
{ char[] word = input[wstart .. input.length];
di cti onary[word] ++;
}
printf("98lduBl d¥8ld % *s\n", | _cnt, wecnt, c_cnt, args[i]);
line total +=1_cnt;
word total += w cnt;
char _total += c_cnt;
}
if (args.length > 2)
{
printf("-----o i \ n%8l d¥8l d¥8! d
total ",
line total, word total, char_total);
}
printf("-----omm i \n");
char[][] keys = dictionary.keys; /1 find all words in
di ctionary[]
for (int i = 0; i < keys.length; i++)
{ char[] word;
word = keys[i];
printf("98d % *s\n", dictionary[word], word);
}
return O;
}

82

The D Programming Language

Structs, Unions, Enums

Structs, Unions

Aggr egat eDecl ar at i on:
Tag { Decl Defs }
Tag ldentifier { DeclDefs }
Tag ldentifier ;

Tag:
struct
uni on

They work like they do in C, with the following exceptions:

« no bit fields

- alignment can be explicitly specified

« NO separate tag name space - tag names go into the current scope
« declarationslike:

. struct ABC x;

are not alowed, replace with:

ABC x;

« anonymous structs/unions are allowed as members of other structs/unions
« Default initializers for members can be supplied.
« Member functions and static members are allowed.

Structs and unions are meant as simple aggregations of data, or as away to paint a data
structure over hardware or an external type. External types can be defined by the operating
system API, or by afile format. Object oriented features are provided with the class data type.

Static Initialization of Structs

Static struct members are by default initialized to 0, and floating point valuesto NAN. If a
static initializer is supplied, the members are initialized by the member name, colon,
expression syntax. The members may beinitialized in any order.

struct X { int a; int b; int ¢c; int d=7;}

static X x { a:1, b:2}; /l cis set to 0, dto 7

static X z { c:4, b:5, a2, d:5}; /[l z.a =2, z.b =5 z.¢c =

Static Initialization of Unions

Unions are initialized explicitly.
union U { int a; double b; }
static Uu ={ b : 5.0 }; /1 ub=5.0

Other members of the union that overlay the initializer, but occupy more storage, have the
extra storage initialized to zero.

83

The D Programming Language

Enums

EnunDecl ar ati on:
enum identifier { EnumMenbers }
enum { EnumMenbers }
enum i dentifier ;

EnunmVenber s:
Enumvenber
Enunmvenber
Enumvenber , EnumMenbers

Enumvenber :
Identifier
Identifier = Expression

Enums replace the usual C use of #define macros to define constants. Enums can be either
anonymous, in which case they simply define integral constants, or they can be named, in

which case they introduce a new type.
enum{ A B, C} /1 anonynous enum

Defines the constants A=0, B=1, C=2 in amanner equivaent to:

const int A = O;
const int B = 1;
const int C = 2;
Whereas.
enum X { A, B, C} /1 named enum

Define anew type X which has values X.A=0, X.B=1, X.C=2

Named enum members can be implicitly cast to integral types, but integral types cannot be
implicitly cast to an enum type.

Enums must have at |east one member.

If an Expression is supplied for an enum member, the value of the member is set to the result
of the Expression. The Expression must be resolvable at compile time. Subsequent enum
members with no Expression are set to the value of the previous member plus one:

enum{ A B =5+7, C D=8, E}

Sets A=0, B=12, C=13, D=8, and E=9.

The D Programming Language

Enum Properties

.mn Smal | est val ue of enum
. max Largest val ue of enum
.size Size of storage for an enunerated val ue

For exanpl e:

X.mn is X. A
X. max is X.C
X. si ze is sanme as int.size

Initialization of Enums

In the absense of an explicit initializer, an enum variable isinitialized to the first enum value.
enum X { A=3, B, C}
X X; /[l x isinitialized to 3

85

The D Programming Language

Classes

The object-oriented features of D all come from classes. The class heirarchy has asits root the
class Object. Object defines aminimum level of functionality that each derived class has, and
adefault implementation for that functionality.

Classes are programmer defined types. Support for classes are what make D an object
oriented language, giving it encapsulation, inheritance, and polymorphism. D classes support
the single inheritance paradigm, extended by adding support for interfaces. Class objects are
instantiated by reference only.

A class can be exported, which means its name and all its non-private members are exposed
externaly to the DLL or EXE.

A class declaration is defined:

Cl assDecl arati on:
class Identifier [SuperC ass {, InterfaceC ass }] C assBody

Super Cl ass:
Identifier

I nt er f aceC ass:
I dentifier

Cl assBody:
{ Declarations }

Classes consist of:
super class
interfaces

dynamic fields
static fields

types

functions

static functions
dynamic functions
destructors

static constructors
static destructors
invariants

unit tests

allocator

deall ocator

A classis defined:

cl ass Foo

{

}
Note that thereisno trailing ; after the closing } of the class definition. It is aso not possible

to declare avariable var like:

nmenbers ...

86

The D Programming Language

class Foo { } var;

Instead:
class Foo { }
Foo var;

Fields

Class members are always accessed with the . operator. There are no :: or -> operators asin
C++.

The D compiler isfreeto rearrange the order of fieldsin a class to optimally pack themin an
implementation-defined manner. Hence, alignment statements, anonymous structs, and
anonymous unions are not allowed in classes because they are data layout mechanisms.
Consider the fields much like the local variablesin afunction - the compiler assigns some to
registers and shuffles others around all to get the optimal stack frame layout. This frees the
code designer to organize the fields in a manner that makes the code more readable rather
than being forced to organize it according to machine optimization rules. Explicit control of
field layout is provided by struct/union types, not classes.

In C++, it is common practice to define afield, along with "object-oriented” get and set
functionsfor it:

cl ass Abc
{ int property;
voi d setProperty(int newproperty) { property = newproperty;

int getProperty() { return property; }
b

Abc a;
a.set Property(3);
int x = a.getProperty();

All thisis quite a bit of typing, and it tends to make code unreadable by filling it with
getProperty() and setProperty() calls. In D, get'ers and set'ers take advantage of the idea that
anlvalueisaset'er, and an rvalueisaget'er:

cl ass Abc
{ int nyprop;
voi d property(int newproperty) { nmyprop = newproperty; } //
set' er
int property() { return myprop; } /1 get'er
}
which isused as:
Abc a;
a.property = 3; /1 equivalent to a.property(3)
int x = a.property; /1 equivalent to int x = a.property()

Thus, in D you can treat a property like it was asimple field name. A property can start out
actually being asimple field name, but if later if becomes necessary to make getting and
setting it function calls, no code needs to be modified other than the class definition.

Super Class

All classes inherit from a super class. If oneis not specified, it inherits from Object. Object
formsthe root of the D class inheritance heirarchy.

87

The D Programming Language

Constructors

Members are always initialized to the default initializer for their type, which isusually O for
integer types and NAN for floating point types. This eliminates an entire class of obscure
problems that come from neglecting to initialize a member in one of the constructors. In the
class definition, there can be a static initializer to be used instead of the default:

cl ass Abc

{
int a; /|l default initializer for ais 0O
long b = 7;// default initializer for bis 7
float f; [/l default initializer for f is NAN

}

This static initialization is done before any constructors are called.

Constructors are defined with afunction name of this and having no return value:

cl ass Foo
{
this(int x) /1 declare constructor for Foo
{
-
t hi s(
{ C
}
}

Base class construction is done by calling the base class constructor by the name super:
class A{ this(int y) { } }

class B: A

r
int j;
this()
{
éﬁber(3); /1 call base constructor A this(3)
}
}
Constructors can also call other constructors for the same class in order to share common
initializations:
class C
r
int j;
thi s()
{
}
this(int i)
this();
i =3
}
}

If no call to constructors viathisor super appear in a constructor, and the base class has a
constructor, acall to super () isinserted at the beginning of the constructor.

88

The D Programming Language

If there is no constructor for a class, but there is a constructor for the base class, a default
constructor of the form:

this() { }
isimplicitly generated.
Class object construction is very flexible, but some restrictions apply:

Itisillegal for constructorsto mutually call each other:

this() { this(1); }

this(int i) { this(); } /1 illegal, cyclic
constructor calls

wn =

4. If any constructor call appears inside a constructor, any path through the constructor
must make exactly one constructor call:

5 this() { a || super(); } /1 illegal
6.

7. this() { this(1l) || super(); }// ok

8.

9. t his()

10. {

11. for (...)

12. {

13. super () ; /1 illegal, inside |oop
14.

15. }

16. Itisillegal to refer to thisimplicitly or explicitly prior to making a constructor call.
17. Constructor calls cannot appear after labels (in order to make it easy to check for the
previous conditions in the presence of goto's).

Instances of class objects are created with NewEXxpressions:
A a = new A(3);

The following steps happen:

1. Storageisallocated for the object. If thisfails, rather than return null, an
OutOfMemoryException is thrown. Thus, tedious checks for null references are
unnecessary.

2. Theraw datais statically initialized using the values provided in the class definition.
The pointer to the vtbl is assigned. This ensures that constructors are passed fully
formed objects. This operation is equivaent to doing a memcpy() of a static version of
the object onto the newly allocated one, although more advanced compilers may be
able to optimize much of this away.

3. If thereisaconstructor defined for the class, the constructor matching the argument
listiscaled.

4. If classinvariant checking isturned on, the classinvariant is called at the end of the
constructor.

Destructors

The garbage collector calls the destructor function when the object is deleted. The syntax is:
cl ass Foo

89

The D Programming Language

~thi s() /1 destructor for Foo

}

There can be only one destructor per class, the destructor does not have any parameters, and
has no attributes. It is always virtual .

The destructor is expected to release any resources held by the object.

The program can explicitly inform the garbage collector that an object is no longer referred to
(with the delete expression), and then the garbage collector calls the destructor immediately,
and adds the object's memory to the free storage. The destructor is guaranteed to never be
called twice.

The destructor for the super class automatically gets called when the destructor ends. Thereis
no way to call the super destructor explicitly.

Static Constructors

A static constructor is defined as afunction that performs initializations before the main()
function gets control. Static constructors are used to initialize static class members with
values that cannot be computed at compile time.

Static constructorsin other languages are built implicitly by using member initializers that
can't be computed at compile time. The trouble with this stems from not having good control
over exactly when the code is executed, for example:

cl ass Foo

{

static int a
static int b

o T
* 4
MR

}

What values do aand b end up with, what order are the initializations executed in, what are
the values of aand b before the initializations are run, is this a compile error, or isthisa
runtime error? Additional confusion comes from it not being obvious if an initializer is static
or dynamic.

D makes this simple. All member initializations must be determinable by the compiler at
compile time, hence there is no order-of-eval uation dependency for member initializations,
and it is not possible to read a value that has not been initialized. Dynamic initialization is
performed by a static constructor, defined with a special syntax static this().

cl ass Foo
{
static int a; /] default initialized to O
static int b = 1;
static int ¢ = b + a; /!l error, not a constant initializer
static this() /1 static constructor
{
a=>b+ 1; // ais set to 2
b =a* 2 // bis set to 4

90

The D Programming Language

}

static this() iscaled by the startup code before mai n() iscaled. If it returns normally
(does not throw an exception), the static destructor is added to the list of function to be called
on program termination. Static constructors have empty parameter lists.

A current weakness of the static constructorsis that the order in which they are called is not
defined. Hence, for the time being, write the static constructors to be order independent. This
problem needs to be addressed in future versions.

Static Destructor

A static destructor is defined as a specia static function with the syntax st atic ~t hi s().
cl ass Foo

{

static ~this() /1 static destructor

{
}
}

A static constructor gets called on program termination, but only if the static constructor
completed successfully. Static destructors have empty parameter lists. Static destructors get
called in the reverse order that the static constructors were called in.

Class Invariants

Class invariants are used to specify characteristics of a class that always must be true (except
while executing a member function). For example, a class representing a date might have an

invariant that the day must be 1..31 and the hour must be 0..23:
class Date

t
i nt day;
i nt hour;

i nvariant ()

{
assert (1l <= day && day <= 31);
assert (0 <= hour && hour < 24);

}
}

The classinvariant is a contract saying that the asserts must hold true. Theinvariant is
checked when a class constructor completes, at the start of the class destructor, before a public
or exported member is run, and after a public or exported function finishes. The invariant can

be checked when a class object is the argument to anassert () expression, as.
Dat e nydate

éééert(nydate); /1 check that class Date invariant holds
If theinvariant fails, it throwsan | nvari ant Except i on. Class invariants are inherited, that is,
any classinvariant isimplicitly anded with the invariants of its base classes.
There can be only one invariant() function per class.

When compiling for release, the invariant code is not generated, and the compiled program
runs at maximum speed.

91

The D Programming Language

Unit Tests

Unit tests are a series of test cases applied to a class to determineif it is working properly.
Ideally, unit tests should be run every time a program is compiled. The best way to make sure
that unit tests do get run, and that they are maintained along with the class code isto put the
test code right in with the class implementation code.

D classes can have a special member function called:

uni ttest

{
}

Thetest() functions for al the classes in the program get called after static initialization is
done and before the main function is called. A compiler or linker switch will remove the test
code from the final build.

...test code...

For example, given a class Sum that is used to add two values:

class Sum

{
int add(int x, int y) { return x +vy; }

uni ttest

{
assert(add(3,4) == 7);
assert(add(-2,0) == -2);

}

There can be only one uni t t est function per class.

Class Allocators
A class member function of the form:
new(ui nt size)

{
}

iscaled aclass allocator. The class allocator can have any number of parameters, provided
the first oneisof type uint. Any number can be defined for a class, the correct oneis

determined by the usual function overloading rules. When a new expression:
new Foo;

is executed, and Foo is aclass that has an allocator, the allocator is called with the first
argument set to the size in bytes of the memory to be allocated for the instance. The allocator
must allocate the memory and return it asavoi d*. If the alocator fails, it must not return a
null, but must throw an exception. If there is more than one parameter to the allocator, the

additional arguments are specified within parentheses after the new in the NewExpression:
cl ass Foo

{
this(char[] a) { ... }

new(uint size, int x, int y)

{

92

The D Programming Language

new(1, 2) Foo(a); /1 calls newFoo.size,1,?2)

Derived classes inherit any alocator from their base class, if oneis not specified.

SeealsolExpchi'rcmmsrammmmrJ.

Class Deallocators

A class member function of the form:
del ete(void *p)

{
}

is called aclass deallocator. The deallocator must have exactly one parameter of typevoi d*.

Only one can be specified for a class. When a delete expression:
delete f;

is executed, and f is areference to a class instance that has a deall ocator, the deallocator is
called with a pointer to the class instance after the destructor (if any) for the classis called. It
isthe responsibility of the deallocator to free the memory.

Derived classes inherit any deallocator from their base class, if oneis not specified.

SeealsolEpr'i'ci't-elassl'nstanceﬁ'bcari'onr

Auto Classes

An auto classis aclass with the auto attribute, asin:
auto class Foo { ... }

The auto characteristic is inherited, so if any classes derived from an auto class are aso auto.

An auto class reference can only appear as afunction local variable. It must be declared as
being auto:

auto class Foo { ... }
voi d func()

Foo f; /'l error, reference to auto class nust be auto
auto Foo g = new Foo(); /'l correct

}

When an auto class reference goes out of scope, the destructor (if any) for it is automatically
called. This holdstrue even if the scope was exited via a thrown exception.

| nterfaces

I nt er f aceDecl arati on:

93

The D Programming Language

interface ldentifier I|nterfaceBody
interface ldentifier : Superlnterfaces |nterfaceBody

Super I nterfaces
Identifier
Identifier , Superlnterfaces

I nt er f aceBody:
{ Decl Defs }

Interfaces describe alist of functions that a class that inherits from the interface must
implement. A class that implements an interface can be converted to areference to that
interface. Interfaces correspond to the interface exposed by operating system objects, like
COM/OLE/ActiveX for Win32.

Interfaces cannot derive from classes; only from other interfaces. Classes cannot derive from
an interface multiple times.

interface D

void foo();

}

class A: D, D // error, duplicate interface

{
}

An instance of an interface cannot be created.
interface D

void foo();

Dd=new IX); /1 error, cannot create instance of interface

Interface member functions do not have implementations.
interface D

void bar() { } /1 error, inplenentation not allowed

}

All interface functions must be defined in a class that inherits from that interface:
interface D

void foo();

}

class A: D

void foo() { } /1 ok, provides inplenentation

}

class B: D

int foo() { } /1 error, no void foo() inplenentation

}

Interfaces can be inherited and functions overridden:

94

The D Programming Language

interface D

int foo();
}

class A: D

int foo() { return 1; }
}

class B: A

int foo() { return 2; }

B b = new B()

b. foo(); /1 returns 2

Dd= (D b; /1 ok since B inherits A's D inplenentation
d.foo(); /'l returns 2;

Interfaces can be reimplemented in derived classes:
interface D

int foo();

class A: D

int foo() { return 1; }
}

class B: A D

int foo() { return 2; }

}

B b = new B()

b. foo(); /'l returns 2

Dd = (D b;

d.foo(); /1 returns 2

Aa=(A b

Dd2 = (D a

d2.foo(); /1 returns 2, even though it is A's D, not

95

The D Programming Language

A reimplemented interface must implement all the interface functions, it does not inherit them

from a super class:
interface D

int foo();

class A: D

int foo() { return 1; }
}

class B: A D
{

} /1 error, no foo() for interface D

96

The D Programming Language

Functions

Virtual Functions

All non-static member functions are virtual. This may sound inefficient, but since the D
compiler knows al of the class heirarchy when generating code, al functions that are not
overridden can be optimized to be non-virtual. In fact, since C++ programmers tend to "when
in doubt, make it virtual", the D way of "make it virtual unless we can prove it can be made
non-virtual" results on average much more direct function calls. It also results in fewer bugs
caused by not declaring afunction virtual that gets overridden.

Functions with non-D linkage cannot be virtual, and hence cannot be overridden.

Covariant return types are supported, which means that the overriding function in a derived
class can return atype that is derived from the type returned by the overridden function:

class A{ }
class B: A{}

cl ass Foo

Atest() { return null; }
}

class Bar : Foo

{

Foo. test ()
}

Btest() { return null; } // overrides and is covariant with

Inline Functions

There is no inline keyword. The compiler makes the decision whether to inline a function or
not, analogously to the register keyword no longer being relevant to a compiler's decisions on
enregistering variables. (There is no register keyword either.)

Function Overloading

In C++, there are many complex levels of function overloading, with some defined as "better"
matches than others. If the code designer takes advantage of the more subtle behaviors of
overload function selection, the code can become difficult to maintain. Not only will it take a
C++ expert to understand why one function is selected over another, but different C++
compilers can implement this tricky feature differently, producing subtly disastrous results.

In D, function overloading is simple. It matches exactly, it matches with implicit conversions,
or it does not match. If there is more than one match, it isan error.

Functions defined with non-D linkage cannot be overloaded.

Function Parameters

Parameters arein, out, or inout. in isthe default; out and inout work like storage classes. For
example:
int foo(int x, out int y, inout int z, int q);

97

The D Programming Language

xisin,yisout, zisinout,and gisin.

out israre enough, and inout even rarer, to attach the keywords to them and leave in asthe
default. The reasons to have them are:

« Thefunction declaration makes it clear what the inputs and outputs to the function are.

« It diminates the need for IDL as a separate |language.

It provides more information to the compiler, enabling more error checking and
possibly better code generation.

« It (perhaps?) eliminates the need for reference (&) declarations.

out parameters are set to the default initializer for the type of it. For example:
void foo(out int bar)

{
}

int bar = 3;
foo(bar);
// bar is now O

Local Variables

It isan error to use alocal variable without first assigning it avalue. The implementation may
not always be able to detect these cases. Other language compilers sometimes issue a warning
for this, but sinceit is always a bug, it should be an error.

Itisan error to declare alocal variable that is never referred to. Dead variables, like
anachronistic dead code, isjust a source of confusion for maintenance programmers.

It isan error to declare aloca variable that hides another local variable in the same function:

void func(int x)

{ int x; error, hides previous definition of x
doubl e vy;
{ char vy; error, hides previous definition of y
int z;
{ wchar z; | egal, previous z is out of scope

}

While this might look unreasonable, in practice whenever thisis doneit either isabug or at
least looks like a bug.

It is an error to return the address of or areferenceto aloca variable.

It isan error to have alocal variable and alabel with the same name.

Nested Functions

Functions may be nested within other functions:
int bar(int a)

int foo(int b)

98

The D Programming Language

int abc() { return 1; }
return b + abc();

return foo(a);

}
void test ()

int i = bar(3); /1 i is assigned 4
}

Nested functions can only be accessed by the most nested lexically enclosing function, or by

another nested function at the same nesting depth:
int bar(int a)

{
int foo(int b) { returnb + 1; }
int abc(int b) { return foo(b); } // ok
return foo(a);
}
void test ()
{
int i = bar(3); /1 ok
int j = bar.foo(3); /1 error, bar.foo not visible
}

Nested functions have access to the variables and other symbols defined by the lexically

enclosing function. This access includes both the ability to read and write them.
int bar(int a)
{ int ¢ = 3;

int foo(int b)

{
b += c; /Il 4 is added to b
C++; /'l bar.c is now 5
return b +c; // 12 is returned
}
c = 4;
int i = foo(a); [l i is set to 12
returni + c; /!l returns 17
}
void test ()
{
int i = bar(3); /1 i is assigned 17
}

This access can span multiple nesting levels:
int bar(int a)
{ int ¢ = 3;
int foo(int b)
i nt abc()
{

return c; /|l access bar.c

return b + ¢ + abc();

99

The D Programming Language

return foo(3);

}

Static nested functions cannot access any stack variables of any lexically enclosing function,
but can access static variables. Thisis analogous to how static member functions behave.
int bar(int a)
{ int c;
static int d;

static int foo(int b)

{
; Il ok

/1 error, foo() cannot access frane of bar()

- O T

=d
:C;
eturn b + 1;

return foo(a);

}

Functions can be nested within member functions:
struct Foo

{ int a;
int bar()
{ int c;
int foo()
{
return c + a;
}
}
}

Member functions of nested classes and structs do not have access to the stack variables of the

enclosing function, but do have access to the other symbols:
void test ()
{ int j;
static int s;

struct Foo

{ int a;
i nt bar()
{ int ¢ = s; /1 ok, s is static
int d=j; /1 error, no access to frane of
test ()
int foo()
int e =s; /1l ok, s is static
int f =j; /1 error, no access to frane of
test ()
return c + a; [// ok, frame of bar() is accessible,
/1 so are menbers of Foo accessible
Vi a
/1 the "this' pointer to Foo. bar()
}
}
}

100

The D Programming Language

Delegates, Function Pointers, and Dynamic Closures
A function pointer can point to a static nested function:

int function() fp;

void test ()
{ static int a = 7;
static int foo() { return a + 3; }
fp = foo;
}
voi d bar ()
test();
int i =fp(); Il i is set to 10
}

A delegate can be set to a non-static nested function:
i nt del egate() dg;

void test ()
{ int a =7,
int foo() { return a + 3; }
dg = foo;
int i =dg(); /[l i is set to 10

}

The stack variables, however, are not valid once the function declaring them has exited, in the
same manner that pointers to stack variables are not valid upon exit from afunction:

i nt* bar()
int b;
test();
int i =dg(); /1 error, test.a no |longer exists
return &b; [l error, bar.b not valid after bar() exits

}

Delegates to non-static nested functions contain two pieces of data: the pointer to the stack
frame of the lexically enclosing function (called the frame pointer) and the address of the
function. Thisis analogous to struct/class non-static member function delegates consisting of
athis pointer and the address of the member function. Both forms of delegates are

interchangeable, and are actually the same type:
struct Foo

{ int a=7;
int bar() { return a; }
}
int foo(int delegate() dg)
{
return dg() + 1;
}
void test ()
{
int x = 27;
int abc() { return x; }
Foo f;
int i;
i = foo(abc); /[l i is set to 28

101

The D Programming Language

i = foo(f.bar); [l i is set to 8
}

This combining of the environment and the function is called a dynamic closure.

102

The D Programming Language

Operator Overloading

Overloading is accomplished by interpreting specially named member functions as being
implementations of unary and binary operators. No additional syntax is used.

Unary Operator Overloading

Overloadable Unary Operators

op | opfunc

- neg

~ com

e++ | postinc

e-- |postdec

Given aunary overloadable operator op and its corresponding class or struct member function
name opfunc, the syntax:

op a

where aisaclass or struct object reference, isinterpreted asif it was written as:
a. opfunc()

Overloading ++e and --e

Since ++eis defined to be semantically equivalent to (e += 1), the expression ++eis rewritten
as (e += 1), and then checking for operator overloading is done. The situation is analogous for
--e.

Examples
1. class A{ int neg(); }
2. A a;
3. -a; /1 equivalent to a.neg();
4,
5. class A{ int neg(int i); }
6. A a;
7. - a; /1 equivalent to a.neg(), which is an error
8.

Binary Operator Overloading

Overloadable Binary Operators

op |commutative? | opfunc |opfunc r
+ yes add -
- no sub sub_r
* yes mul -

103

The D Programming Language

/ no div div_r
% no mod mod_r
& yes and -

| |yes or -

N yes xor -

<< no shl shl _r
>> no shr shr_r
>>> | no ushr ushr r
=~ no cat cat _r
== yes eq -

I= yes eq -

< yes cnp -

<= yes cnp -

> yes cnp -

>= yes cnp -

+= no addass | -

-= no subass |-

*= no mul ass |-

/= no divass |-

%= | no nmodass |-

&= |no andass | -

= no or ass -

N= no xorass |-
<<= | no shlass |-
>>= | no shrass |-
>>>= | no ushrass | -

~= no catass |-

Given abinary overloadable operator op and its corresponding class or struct member
function name opfunc and opfunc_r, the syntax:

aopb
isinterpreted asif it was written as:

104

The D Programming Language

a. opfunc(b)

or:
b. opfunc_r(a)

The following sequence of rulesis applied, in order, to determine which form is used:

1. If aisastruct or class object reference that contains a member named opfunc, the

expression is rewritten as:
2. a. opfunc(b)

3. If bisastruct or class object reference that contains a member named opfunc_r and

the operator op is not commutative, the expression is rewritten as:
4, b. opfunc_r(a)

5. If bisastruct or class object reference that contains a member named opfunc and the

operator op is commutative, the expression is rewritten as:
6. b. opfunc(a)

7. If aor bisastruct or class object reference, it is an error.

Examples
1. class A{ int add(int i); }
2. A a;
3. a+ 1, // equivalent to a.add(l)
4.
5. 1+ a; // equivalent to a.add(1)
6.
7. class B{ int div_r(int i); }
8. B b;
9. 1/ b; /] equivalent to b.div_r(1)
10.

Overloading == and !=

Both operators usethe eq() function. The expression (a == b) isrewritten asa. eq(b), and
(a !'= b) isrewrittenas! a. eq(b).

The member function eq() is defined as part of Object as:
int eq(Object 0);
so that every class object hasaneq() .

If astruct has no eq() function declared for it, a bit compare of the contents of the two structs
is done to determine equality or inequality.

Overloading <, <=, > and >=

These comparison operators all usethecnp() function. The expression (a op b) isrewritten
as(a.cnp(b) op 0).Thecommutative operation isrewrittenas(0 op b.cnp(a))

The member function cnp() isdefined as part of Object as:

105

The D Programming Language

int cnp(Object 0);
so that every class object hasacnp() .

If astruct has no cmp() function declared for it, attempting to compare two structsis an error.

Note: Comparing areference to a class object against nul | should be done as:
if (a === null)

and not as:
if (a ==null)

The latter is converted to:
if (a.crmp(null))

which will fail if cp isavirtua function.

Rationale
The reason for having both eq() and cmp() is that:

« Testing for equality can sometimes be a much more efficient operation than testing for
less or greater than.
« For some objects, testing for less or greater makes no sense. For these, override cmp()

with:
. class A
. {
. int cnp(Qbj ect 0)
. { assert (0); /1 conparison nmakes no sense
. return O;
. }

Future Directions
Likely many more operators will become overloadable. But the operators ., &&, ||, ?:, and a

106

The D Programming Language

Templates

Templates are D's approach to generic programming. Templates are defined with a

TemplateDeclaration:
Tenpl at eDecl arati on:
tenpl ate Tenpl ateldentifier (Tenpl at eParaneterlList)
{ Decl Defs }

Tenpl atel dentifier:
I dentifier

Tenpl at ePar anet er Li st
Tenpl at ePar anet er
Tenpl at eParaneter , Tenpl at ePar anet er Li st

Tenpl at ePar anet er :
TypePar anet er
Val uePar anet er

TypePar anet er :
Identifier
Identifier : Type

Val uePar anet er :
Decl arati on
Decl aration : Assi gnExpression

The body of the TemplateDeclaration must be syntactically correct even if never instantiated.
Semantic analysisis not done until instantiated. A template forms its own scope, and the
template body can contain classes, structs, types, enums, variables, functions, and other
templates.

Template parameters can be either types or values. Vaue parameters must be of an integral
type, and specializations for them must resolve to an integral constant.

Templates are instantiated with:

Tenpl at el nst ance:
i nstance Tenpl ateldentifer (Tenpl at eArgunent Li st)

Tenpl at eAl i asDecl arati on:
Tenpl at el nstance Aliasldentifier;

Aliasldentifier:
Identifier

Tenpl at eAr gunent Li st :
Tenpl at eAr gunent
Tenpl at eArgunent , Tenpl at eAr gunent Li st

Tenpl at eAr gunent :

Type
Assi gnExpr essi on

Once instantiated, the declarations inside the template, called the template members, are in the

scope of the Aliasldentifier:
template TFoo(T) { alias T* t; }

107

The D Programming Language

i nstance TFoo(int) abc;

éhé.t X; /1 declare x to be of type int

Template members can aso be accessed directly from the Templatel nstance:
templ ate TFoo(T) { alias T* t; }
i nstance TFoo(int).t x; /1 declare x to be of type int

Multiple instantiations of a TemplateDeclaration with the same TemplateParameterList all
will refer to the same instantiation. For example:

tenplate TFoo(T) { T f; }

i nstance TFoo(int) a;

i nstance TFoo(int) b;

af =3

assert(b.f == 3); /1 a and b refer to the sane instance of TFoo

Thisistrue even if the Templatel nstances are done in different modules.

If multiple templates with the same Templatel dentifier are declared, they are distinct if they
have a different number of arguments or are differently specialized.

For example, a simple generic copy template would be:

tenmpl ate TCopy(T)
{
void copy(out T to, T from
to = from

}

To use the template, it must first be instantiated with a specific type:
i nstance TCopy(int) copyint;

And then the instance can be called:
int i;
copyint.copy(i, 3);

Instantiation Scope

Templatel nstantances are aways performed in the scope of where the TemplateDeclaration is
declared, with the addition of the template parameters being declared as aliases for their
deduced types.

For example:

-------- module a ---------
templ ate TFoo(T) { void bar() { func(); } }

i mport a;

void func() { }
i nstance TFoo(int) f; // error: func not defined in nodule a

and:

108

The D Programming Language

tenplate TFoo(T) { void bar() { func(l); } }
void func(double d) { }

———————— nodule b ---------
i mport a;

void func(int i) { }
i nstance TFoo(int) f;

f.bar(); /1 will call a.func(double)

Argument Deduction

The types of template parameters are deduced for a particular template instantiation by
comparing the template argument with the corresponding template parameter.

For each template parameter, the following rules are applied in order until atype is deduced
for each parameter:

1. If thereisno type specialization for the parameter, the type of the parameter is set to
the template argument.

2. If the type specidization is dependent on atype parameter, the type of that parameter
IS set to be the corresponding part of the type argument.

3. If after adl the type arguments are examined there are any type parameters left with no
type assigned, they are assigned types corresponding to the template argument in the
same position in the TemplateArgumentList.

4. If applying the above rules does not result in exactly one type for each template
parameter, then it isan error.

For example:
tenplate TFoo(T) { }
i nstance TFoo(int) Fool; /1 (1) T is deduced to be int
i nstance TFoo(char*) Foo2; /1 (1) T is deduced to be char*

template TFoo(T : T*) { }
i nstance TFoo(char*) Foo03; /1 (2) T is deduced to be char
template TBar(D, U: D[]) { }
i nstance TBar(int, int[]) Bar
int, Uis int[]

i nstance TBar(char, int[]) Bar2; // (4) error, Dis both char and

1; /1 (2) Dis deduced to be

i nt

template TBar(D : E*, E) { }
instance TBar(int*, int); /1 (1) Eis int
/[l (3) Dis int*

When considering matches, a class is considered to be a match for any super classes or

interfaces:
class A { }
class B: A{ }

tenplate TFoo(T : A { }
i nstance TFoo(B); /1 (3) Tis B

template TBar (T : U, U: A { }
i nstance TBar(B*, B); Il (2) Tis B*
[/ (3) Uis B

109

The D Programming Language

Value Parameters

This example of template foo has a value parameter that is specialized for 10:
template foo(U: int, int T : 10)

}
void main()

assert(instance foo(int, 10).x == 10);

Specialization

Templates may be specialized for particular types of arguments by following the template

parameter identifier with a: and the specialized type. For example:
tenpl ate TFoo(T) { ... }y Il #1

template TFoo(T : T[]) { Y I O#2

template TFoo(T : char) { ... } /] #3

tenmpl ate TFoo(T, U, V) { } I #4

i nstance TFoo(int) fool; /1 instantiates #1

i nstance TFoo(double[]) foo02; /1 instantiates #2 with T being
doubl e

i nstance TFoo(char) foo03; /] instantiates #3

i nstance TFoo(char, int) fooe; /1 error, nunber of argunents
m smat ch

i nstance TFoo(char, int, int) food4; // instantiates #4

The template picked to instantiate is the one that is most specialized that fits the types of the
TemplateArgumentList. Determine which is more specialized is done the same way as the
C++ partial ordering rules. If the result isambiguous, it is an error.

Limitations
Templates cannot be used to add non-static members or functions to classes. For example:
cl ass Foo
{
tenplate TBar (T)
{
T XX; /1 Error
int func(T) { ... } /1 Error
static T vyy; TN ®
static int func(Tt, inty) { ...} /Il Ok
}

}

Templates cannot be declared inside functions.

110

The D Programming Language

Contracts

Contracts are a breakthrough technigue to reduce the programming effort for large projects.
Contracts are the concept of preconditions, postconditions, errors, and invariants. Contracts
can be done in C++ without modification to the language, but the result is clumsy and
inconsistent.

Building contract support into the language makes for:

1. aconsistent look and feel for the contracts

2. tool support

3. it'spossible the compiler can generate better code using information gathered from the
contracts

4. easier management and enforcement of contracts

5. handling of contract inheritance

;P

d -

Theidea of acontract issimple - it'sjust an expression that must evaluate to true. If it does
not, the contract is broken, and by definition, the program has a bug in it. Contracts form part
of the specification for a program, moving it from the documentation to the code itself. And
as every programmer knows, documentation tends to be incomplete, out of date, wrong, or
non-existent. Moving the contracts into the code makes them verifiable against the program.

Assert Contract

The most basic contract is thefassert] An assert inserts a checkable expression into the code,

and that expression must evaluate to true:
assert (expression);

C programmers will find it familiar. Unlike C, however, an asser t in function bodies works
by throwing an Asser t Except i on, which can be caught and handled. Catching the contract
violation is useful when the code must deal with errant uses by other code, when it must be
failure proof, and as a useful tool for debugging.

Pre and Post Contracts

The pre contracts specify the preconditions before a statement is executed. The most typical
use of thiswould be in validating the parameters to a function. The post contracts validate the
result of the statement. The most typical use of thiswould be in validating the return value of
afunction and of any side effectsit has. The syntax is:

N

{

111

The D Programming Language

...contract preconditions..

out (result)

{

}
body

{

}
By definition, if apre contract fails, then the body received bad parameters. An InException is

thrown. If apost contract fails, then there is a bug in the body. An OutException is thrown.

...contract postconditions..

...code. ..

Either thei n or the out clause can be omitted. If the out clauseisfor afunction body, the
variabler esul t isdeclared and assigned the return value of the function. For example, let's
implement a square root function:

| ong square_root (long x)
in
{

assert(x >= 0);
out (result)

assert((result * result) == x);

}
body

{

}
The assert'sin the in and out bodies are called contracts. Any other D statement or expression

isallowed in the bodies, but it isimportant to ensure that the code has no side effects, and that
the release version of the code will not depend on any effects of the code. For arelease build
of the code, the in and out code is not inserted.

return math. sqrt(x);

If the function returns avoid, thereis no result, and so there can be no result declaration in the
out clause. In that case, use:

void func()
out

{

}
body

{

}
In an out statement, result isinitialized and set to the return value of the function.

...contracts. ..

The compiler can be adjusted to verify that every in and inout parameter is referenced in the
in { },andevery out and inout parameter isreferenced intheout { }.

The in-out statement can also be used inside afunction, for example, it can be used to check
the results of aloop:

in

{

112

The D Programming Language

assert(j == 0);

assert(j == 10);

}
body

{
for (i =0; i < 10; i++)
j+
}
Thisis not implemented at thistime.

In, Out and Inheritance

If afunction in aderived class overrides afunction in its super class, then only one of thei n
contracts of the base functions must be satisified Overriding functions then becomes a process
of loosening thei n contracts.

Conversely, al of the out contracts needs to be satisified, so overriding functions becomes a
processes of tightening the out contracts.

Class Invariants

Classinvariants are used to specify characteristics of a class that always must be true (except
while executing a member function). They are described in

113

The D Programming Language

Debug and Version

D supports building multiple versions and various debug builds from the same source code

using the features:
DebugSpeci fi cati on
DebugAttri bute
DebugSt at enent

Ver si onSpeci fication
Versi onAttri bute
Ver si onSt at enent

Predefined Versions

Severa environmental version identifiers and identifier name spaces are predefined to
encourage consistent usage. Version identifiers do not conflict with other identifiersin the
code, they are in a separate name space.
DigitalMars
Digital Marsis the compiler vendor
X86
Intel and AMD 32 bit processors
Win32
Microsoft 32 bit Windows systems
linux
All linux systems
LittleEndian
Byte order, least significant first
BigEndian
Byte order, most significant first
D_InlineAsm
Inline assembler isimplemented
none
Never defined; used to just disable a section of code
Others will be added as they make sense and new implementations appear.

It isinevitable that the D language will evolve over time. Therefore, the version identifier
namespace beginning with "D_" isreserved for identifiers indicating D language specification
or new feature conformance.

Compiler vendor specific versions can be predefined if the trademarked vendor identifier
prefixesit, asin:

versi on(Di gital Mars_funky_ext ensi on)

{
}

It isimportant to use the right version identifier for the right purpose. For example, use the
vendor identifier when using a vendor specific feature. Use the operating system identifier
when using an operating system specific feature, etc.

114

The D Programming Language

Specification

DebugSpeci fi cati on
debug = ldentifier ;
debug = Integer ;

Ver si onSpeci fication
version = ldentifier ;
version = Integer ;

Version specifications do not declare any symbols, but instead set aversion in the same
manner that the -ver sion does on the command line. The version specification is used for
conditional compilation with version attributes and version statements.

The version specification makes it straightforward to group a set of features under one major
version, for example:

versi on (Professional Edition)

versi on = Feat ur eA;
versi on = Feat ureB;
versi on = Feat ureC;

versi on (HonmeEdition)

{
version = FeatureA
}
versi on (FeatureB)
{
i mpl enent Feature B ...
}

Debug Statement

Two versions of programs are commonly built, arelease build and a debug build. The debug
build commonly includes extra error checking code, test harnesses, pretty-printing code, etc.
The debug statement conditionally compilesin its statement body. It is D's way of what in C

isdone with #ifdef DEBUG / #endif pairs.
DebugSt at enent :
debug St at enent
debug (Integer) Statenent
debug (ldentifier) Statenent

Debug statements are compiled in when the -debug switch is thrown on the compiler.

debug(lnteger) statements are compiled in when the debug level n set by the -debug(n) switch
is <= Integer.

debug(ldentifier) statements are compiled in when the debug identifier set by the -
debug(identifer) matches Identifier.

If Satement is a block statement, it does not introduce a new scope. For example:
int k;
debug
{ inti;

115

The D Programming Language

int k; /1 error, k already defined

}
X =i; /'l uses the i decl ared above

There is no else clause for a debug statement, as debug statements should add code, not
subtract code.

Version Statement

It is commonplace to conveniently support multiple versions of a module with a single source
file. While the D way isto isolate all versioning into separate modules, that can get
burdensome if it's just simple line change, or if the entire program would otherwise fit into

one module.
Ver si onSt at enent :
Ver si onPr edi cate St at enent
Ver si onPredi cate Statenent el se Statenent

Ver si onPr edi cat e
version (Integer)
version (ldentifier)

The version statement conditionally compilesin its statement body based on the version
specified by the Integer of Identifier. Both forms are set by the -ver sion switch to the
compiler. If Satement is ablock statement, it does not introduce a new scope. For example:

int k;
version (Denp) // conpile in this code block for the deno version
{ int i;
int k; /1 error, k already defined
i = 3;
}
X =i; /'l uses the i declared above

The version statement works together with the version attribute for declarations.
Version statements can nest.

The optional else clause gets conditionally compiled in if the version predicateis fal se:

versi on (X86)

{
/1 inmplenment custominline assenbl er version
}
el se
{ |
/1 use default, but slow, version
}

While the debug and version statements superficially behave the same, they are intended for
very different purposes. Debug statements are for adding debug code that is removed for the
release version. Version statements are to aid in portability and multiple release versions.

Debug Attribute

DebugAttribute
debug
debug (Integer)

116

The D Programming Language

debug (ldentifier)

Two versions of programs are commonly built, arelease build and a debug build. The debug
build includes extra error checking code, test harnesses, pretty-printing code, etc. The debug
attribute conditionally compiles in code:

cl ass Foo
{
int a, b;
debug:
int flag;
}

Conditional Compilation meansthat if the code is not compiled in, it still must be
syntactically correct, but no semantic checking or processing is done on it. No symbols are
defined, no typechecking is done, no code is generated, no imports are imported. Various

different debug builds can be built with a parameter to debug:
debug(n) { } /1 add in debug code if debug level is <=n
debug(identifier) { } // add in debug code if debug keyword is
identifier

These are presumably set by the command line as - debug=n and - debug=i denti fi er.

Version Attribute

VersionAttribute
version (Integer)
version (ldentifier)

The version attribute is very similar to the debug attribute, and in many waysis functionally
interchangable with it. The purpose of it, however, is different. While debug is for building
debugging versions of a program, version is for using the same source to build multiple
release versions.

For instance, there may be afull version as opposed to a demo version:

cl ass Foo

{

int a, b;

version(full)

{
int extrafunctionality()
{
return 1; /1 extra functionality is supported
}
el se // denp
{
int extrafunctionality()
{
return O; /1 extra functionality is not
support ed
}
}
}

Various different version builds can be built with a parameter to version:
version(n) { } // add in version code if version level is >=n

117

The D Programming Language

version(identifier) { } // add in version code if version keyword
is identifier

These are presumably set by the command line as - ver si on=n and - ver si on=i dentifier.

118

The D Programming Language

Error Handlingin D

All programs have to deal with errors. Errors are unexpected conditions that are not part of the
normal operation of a program. Examples of common errors are:

« Out of memory.

« Out of disk space.

« Invaid file name.

« Attempting to write to aread-only file.

« Attempting to read a non-existent file.

+ Requesting a system service that is not supported.

The Error Handling Problem

The traditional C way of detecting and reporting errorsis not traditional, it is ad-hoc and
varies from function to function, including:

« ReturningaNULL pointer.

« Returning a0 vaue.

« Returning anon-zero error code.

+ Requiring errno to be checked.

« Requiring that afunction be called to check if the previous function failed.

To deal with these possible errors, tedious error handling code must be added to each function
call. If an error happened, code must be written to recover from the error, and the error must
be reported to the user in some user friendly fashion. If an error cannot be handled locally, it
must be explicitly propagated back to its caller. The long list of errno values needsto be
converted into appropriate text to be displayed. Adding all the code to do this can consume a
large part of the time spent coding a project - and still, if anew errno value is added to the
runtime system, the old code can not properly display a meaningful error message.

Good error handling code tends to clutter up what otherwise would be a neat and clean
looking implementation.

Even worse, good error handling code isitself error prone, tends to be the least tested (and
therefore buggy) part of the project, and is frequently simply omitted. The end result islikely
a"blue screen of death” as the program failed to deal with some unanticipated error.

Quick and dirty programs are not worth writing tedious error handling code for, and so such
utilities tend to be like using a table saw with no blade guards.

What's needed is an error handling philosophy and methodology that is:

« Standardized - consistent usage makes it more useful.

+ Produces areasonable result even if the programmer fails to check for errors.

« Allows old code to be reused with new code without having to modify the old code to
be compatible with new error types.

« No errors get inadvertently ignored.

« Allows'quick and dirty' utilities to be written that till correctly handle errors.

« Easy to make the error handling source code |ook good.

119

The D Programming Language

The D Error Handling Solution
Let'sfirst make some observations and assumptions about errors:

« Errorsare not part of the normal flow of a program. Errors are exceptional, unusual,
and unexpected.

« Because errors are unusual, execution of error handling code is not performance
critical.

« Thenormal flow of program logic is performance critical.

« All errors must be dealt with in some way, either by code explicitly written to handle
them, or by some system default handling.

« The code that detects an error knows more about the error than the code that must
recover from the error.

The solution isto use exception handling to report errors. All errors are objects derived from
abstract class Error. class Error has a pure virtual function called toString() which produces a
char[] with a human readable description of the error.

If code detects an error like "out of memory,” then an Error is thrown with a message saying
"Out of memory". The function call stack is unwound, looking for a handler for the Error.
Finally blocks are executed as the stack is unwound. If an error handler is found, execution
resumes there. If not, the default Error handler is run, which displays the message and
terminates the program.

How does this meet our criteria?

Standardized - consistent usage makes it more useful.
Thisisthe D way, and is used consistently in the D runtime library and examples.
Produces a reasonable result even if the programmer fails to check for errors.
If no catch handlers are there for the errors, then the program gracefully exits through
the default error handler with an appropriate message.
Allows old code to be reused with new code without having to modify the old code to be
compatible with new error types.
Old code can decide to catch all errors, or only specific ones, propagating the rest
upwards. In any case, there is no more need to correlate error numbers with messages,
the correct message is aways supplied.
No errors get inadvertently ignored.
Error exceptions get handled one way or another. Thereis nothing like a NULL
pointer return indicating an error, followed by trying to use that NULL pointer.
Allows 'quick and dirty' utilities to be written that till correctly handle errors.
Quick and dirty code need not write any error handling code at all, and don't need to
check for errors. The errors will be caught, an appropriate message displayed, and the
program gracefully shut down all by default.
Easy to make the error handling source code look good.
The try/catch/finally statements|ook alot nicer than endlessif (error) goto
errorhandler; statements.
How does this meet our assumptions about errors?
Errors are not part of the normal flow of a program. Errors are exceptional, unusual, and
unexpected.
D exception handling fits right in with that.
Because errors are unusual, execution of error handling code is not performance critical.
Exception handling stack unwinding is arelatively slow process.

120

The D Programming Language

The normal flow of program logic is performance critical.
Since the normal flow code does not have to check every function call for error
returns, it can be realistically faster to use exception handling for the errors.
All errors must be dealt with in some way, either by code explicitly written to handle them, or
by some system default handling.
If there's no handler for a particular error, it is handled by the runtime library default
handler. If an error isignored, it is because the programmer specifically added code to
ignore an error, which presumably means it was intentional .
The code that detects an error knows more about the error than the code that must recover
from the error.
There is no more need to tranglate error codes into human readable strings, the correct
string is generated by the error detection code, not the error recovery code. This also
leads to consistent error messages for the same error between applications.

121

The D Programming Language

Garbage Collection

D isafully garbage collected language. That meansthat it is never necessary to free memory.
Just allocate as needed, and the garbage collector will periodically return all unused memory
to the pool of available memory.

C and C++ programmers accustomed to explicitly managing memory allocation and
deallocation will likely be skeptical of the benefits and efficacy of garbage collection.
Experience both with new projects written with garbage collection in mind, and converting
existing projects to garbage collection shows that:

« Garbage collected programs are faster. This is counterintuitive, but the reasons are:

(0]

(0]

Reference counting is a common solution to solve explicit memory allocation
problems. The code to implement the increment and decrement operations
whenever assignments are made is one source of slowdown. Hiding it behind
smart pointer classes doesn't help the speed. (Reference counting methods are
not a general solution anyway, as circular references never get deleted.)
Destructors are used to deallocate resources acquired by an object. For most
classes, this resource is allocated memory. With garbage collection, most
destructors then become empty and can be discarded entirely.

All those destructors freeing memory can become significant when objects are
allocated on the stack. For each one, some mechanism must be established so
that if an exception happens, the destructors all get called in each frame to
release any memory they hold. If the destructors become irrelevant, then
there's no need to set up specia stack frames to handle exceptions, and the
code runs faster.

All the code necessary to manage memory can add up to quite a bit. The larger
aprogram s, the lessin the cacheit is, the more paging it does, and the slower
it runs.

Garbage collection kicks in only when memory gets tight. When memory is
not tight, the program runs at full speed and does not spend any time freeing
memory.

Modern garbage collecters are far more advanced now than the older, slower
ones. Generational, copying collectors eliminate much of the inefficiency of
early mark and sweep algorithms.

Modern garbage collectors do heap compaction. Heap compaction tends to
reduce the number of pages actively referenced by a program, which means
that memory accesses are more likely to be cache hits and less swapping.
Garbage collected programs do not suffer from gradual deterioration due to an
accumulation of memory leaks.

« Garbage collectors reclaim unused memory, therefore they do not suffer from
"memory leaks" which can cause long running applications to gradually consume
more and more memory until they bring down the system. GC'd programs have longer
term stability.

« Garbage collected programs have fewer hard-to-find pointer bugs. Thisis because
there are no dangling references to freeld memory. Thereis no code to explicitly
manage memory, hence no bugs in such code.

« Garbage collected programs are faster to devel op and debug, because there's no need
for developing, debugging, testing, or maintaining the explicit deallocation code.

122

The D Programming Language

» Garbage collected programs can be significantly smaller, because there is no code to
manage deallocation, and there is no need for exception handlers to deallocate
memory.

Garbage collection is not a panacea. There are some downsides:

« Itisnot predictable when a collection gets run, so the program can arbitrarilly pause.

- Thetimeit takesfor acollection to run is not bounded. While in practiceit isvery
quick, this cannot be guaranteed.

« All threads other than the collector thread must be halted while the collectionisin
progress.

« Garbage collectors can keep around some memory that an explicit deallocator would
not. In practice, thisis not much of an issue since explicit deallocators usually have
memory leaks causing them to eventually use far more memory, and because explicit
deallocators do not normally return deallocated memory to the operating system
anyway, instead just returning it to its own internal pool.

» Garbage collection should be implemented as a basic operating system kernel service.
But since they are not, garbage collecting programs must carry around with them the
garbage collection implementation. While this can be ashared DLL, it is still there.

These constraints are addressed by techniques outlined in Memory Management|

How Garbage Collection Works
To be written...

Interfacing Garbage Collected Objects With Foreign Code

The garbage collector looks for roots in its static data segment, and the stacks and register
contents of each thread. If the only root of an object is held outside of this, then the collecter
will missit and free the memory.

To avoid this from happening,

- Maintain aroot to the object in an area the collector does scan for roots.
+ Reallocate the object using the foreign code's storage allocator or using the C runtime
library's malloc/free.

Pointers and the Garbage Collector

The garbage collector's algorithms depend on pointers being pointers and not pointers being
not pointers. To that end, the following practices that are not unusual in C should be carefully
avoided in D:

« Do not hide pointers by xor'ing them with other values, like the xor'd pointer linked
list trick used in C. Do not use the xor trick to swap two pointer values.

- Do not store pointersinto int variables using casts and other tricks. The garbage
collector does not scan non-pointer types for roots.

- Do not take advantage of alignment of pointers to store bit flagsin the low order bits,
do not store bit flags in the high order bits.

- Do not store integer valuesinto pointers.

« Do not store magic values into pointers, other than nul | .

123

The D Programming Language

+ If you must share the same storage location between pointers and non-pointer types,
use a union to do it so the garbage collector knows about it.

In fact, avoid using pointers at all as much as possible. D provides features rendering most
explicit pointer uses obsolete, such as reference objects, dynamic arrays, and garbage
collection. Pointers are provided in order to interface successfully with C API's and for some
wizard level work.

Working with the Garbage Collector

Garbage collection doesn't solve every memory deallocation problem. For example, if aroot
to alarge data structure is kept, the garbage collector cannot reclaim it, even if it is never
referred to again. To eliminate this problem, it is good practice to set areference or pointer to
an object to null when no longer needed.

This advice applies only to static references or references embedded inside other objects.

There is not much point for such stored on the stack to be nulled, since the collector doesn't
scan for roots past the top of the stack, and because new stack frames are initialized anyway.

124

The D Programming Language

Memory M anagement

Any non-trivial program needs to allocate and free memory. Memory management techniques
become more and more important as programs increase in complexity, size, and performance.
D offers many options for managing memory.

The three primary methods for allocating memory in D are:

1. Static data, allocated in the default data segment.
2. Stack data, allocated on the CPU program stack.

3. ﬁa‘bage-eol-l-eeted-datq alocated dynamically on the garbage collection heap.

This chapter describes techniques for using them, as well as some advanced alternatives:

Strings (and Array) Copy-on-Write

Consider the case of passing an array to afunction, possibly modifying the contents of the
array, and returning the modified array. Since arrays are passed by reference, not by value, a
crucial issue is who owns the contents of the array? For example, afunction to convert an

array of characters to upper case:
char[] toupper(char[] s)

Lt
int i;
for (i =0; i < s.length; i++)
{
char ¢ = s[i];
if ("a <=c¢c && c <="2")
s[i] =c¢c - (cast(char)'a" - "A)

return s;

}
Note that the caller's version of §] isaso modified. Thismay be not at all what was intended,

or worse, §] may be adlice into aread-only section of memory.

If acopy of §[] was always made by toupper(), then that will unnecessarilly consume time and
memory for strings that are already all upper case.

The solution is to implement copy-on-write, which means that a copy is made only if the
string needs to be modified. Some string processing languages do do this as the default
behavior, but thereis ahuge cost to it. The string "abcdeF" will wind up being copied 5 times
by the function. To get the maximum efficiency using the protocal, it'll have to be done

125

The D Programming Language

explicitly in the code. Here's toupper() rewritten to implement copy-on-write in an efficient
manner:

char[] toupper(char[] s)

i nt changed;
int i;

changed = O0;
for (i =0; i < s.length; i++)
{

char ¢ = s[i];

if ("a <=c¢c && c <="2")

{
i f (!changed)
{ char[] r = new char[s.|ength];
r(] =s;
s = r;
changed = 1;
s[i] =c - (cast(char)'a" - "A)
}
}
return s;

}
Copy-on-write is the protocol implemented by array processing functionsin the D Phobos

runtime library.

Real Time

Real time programming means that a program must be able to guarantee a maximum latency,
or time to compl ete an operation. With most memory allocation schemes, including
malloc/free and garbage collection, the latency is theoretically not bound. The most reliable
way to guarantee latency isto preallocate all data that will be needed by the time critical
portion. If no callsto allocate memory are done, the gc will not run and so will not cause the
maximum latency to be exceeded.

Smooth Operation

Related to real time programming is the need for a program to operate smoothly, without
arbitrary pauses while the garbage collector stops everything to run a collection. An example
of such a program would be an interactive shooter type game. Having the game play pause
erratically, while not fatal to the program, can be annoying to the user. There are severa
techniques to eliminate or mitigate the effect:

» Preallocate al data needed before the part of the code that needs to be smooth is run.

» Manually run agc collection cycle at points in program execution where it is already
paused. An example of such a place would be where the program has just displayed a prompt
for user input and the user has not responded yet. This reduces the odds that a collection cycle
will be needed during the smooth code.

 Call gc.disable() before the smooth code is run, and gc.enable() afterwards. Thiswill cause
the gc to favor allocating more memory instead of running a collection pass.

Free Lists

Freelists are agreat way to accelerate access to a frequently allocated and discarded type. The
ideais simple - instead of deallocating an object when done with it, put it on afreelist. When
alocating, pull one off the freelist first.

126

The D Programming Language

cl ass Foo

{

static Foo freelist; /] start of free |ist

static Foo allocate()
{ Foo f;

if (freelist)

{ f = freelist;
freelist = f.next;

}

el se
f = new Foo();
return f;

}

static void deall ocate(Foo f)

{

f.next = freelist;
freelist = f;

}

Foo next; /1 for use by FooFreeli st

}

void test ()
Foo f = Foo.all ocate();

ﬁbb.deallocate(f);

Such free list approaches can be very high performance.

« If used by multiple threads, the allocate() and deall ocate() functions need to be
synchronized.

« The Foo constructor is not re-run by alocate() when alocating from the freelist, so
the allocator may need to reinitialize some of the members.

« Itisnot necessary to practice RIAA with this, since if any objects are not passed to
deallocate() when done, because of athrown exception, they'll eventually get picked

up by the gc anyway.

Reference Counting

The idea behind reference counting is to include a count field in the object. Increment it for
each additional referenceto it, and decrement it whenever areferenceto it ceases. When the
count hits O, the object can be deleted.

D doesn't provide any automated support for reference counting, it will have to be done
explicitly.

m uses the members AddRef() and Release() to maintain the

Explicit Class Instance Allocation

D provides ameans of creating custom allocators and deallocators for class instances.
Normally, these would be alocated on the garbage collected heap, and deallocated when the

127

The D Programming Language

collector decides to run. For specialized purposes, this can be handled by creating
NewDeclarations and DeleteDeclarations. For example, to allocate using the C runtime
library'smal | oc andfree:

i mport c.stdlib;
i mport out of nenory;

i mport gc;

cl ass Foo

{

new(ui nt sz)

{

voi d* p;

p = c.stdlib.malloc(sz);
if (!p)

t hrow new Qut OF Menory();
gc. addRange(p, p + sz);
return p;

}

del et e(voi d* p)

if (p)

{ gc.renpveRange(p);
c.stdlib.free(p);

}

}
}

The critical features of new() are:

new() does not have areturn type specified, but it is defined to be void*. new() must
return avoid*.

If new() cannot allocate memory, it must not return null, but must throw an exception.
The pointer returned from new() must be to memory aligned to the default alignment.
Thisis 8 on win32 systems.

The size parameter is needed in case the allocator is called from a class derived from
Foo and isalarger size than Foo.

A null is not returned if storage cannot be allocated. Instead, an exception is thrown.
Which exception gets thrown is up to the programmer, in this case, OutOfMemory()
is.

When scanning memory for root pointers into the garbage collected heap, the static
data segment and the stack are scanned automatically. The C heap is not. Therefore, if
Foo or any class derived from Foo using the allocator contains any references to data
allocated by the garbage collector, the gc needs to be notified. Thisis done with the
gc.addRange() method.

No initialization of the memory is necessary, as code is automatically inserted after the
call to new() to set the class instance members to their defaults and then the
constructor (if any) isrun.

The critical features of delete() are:

The destructor (if any) has already been called on the argument p, so the data it points
to should be assumed to be garbage.

The pointer p may be null.

If the gc was notified with gc.addRange(), a corresponding call to gc.removeRange()
must happen in the deallocator.

128

The D Programming Language

« If thereisadelete(), there should be a corresponding new().

If memory is allocated using class specific allocators and deallocators, careful coding
practices must be followed to avoid memory leaks and dangling references. In the presence of
exceptions, it is particularly important to practice RAII to prevent memory leaks.

Mark/Release

Mark/Release is equivalent to a stack method of allocating and freeing memory. A 'stack’ is
created in memory. Objects are allocated by simply moving a pointer down the stack. Various
points are 'marked’, and then whole sections of memory are released simply by resetting the
stack pointer back to a marked point.

import c.stdlib
i mport out of nenory;

cl ass Foo

{

static void[] buffer;
static int bufindex;
static const int bufsize = 100;

static this()
{ voi d *p;

p = mal | oc(bufsi ze);
it (!p)

t hrow new Qut O Menory;
gc. addRange(p, p + bufsize);
buffer = p[0 .. bufsize];

}
static ~this()

i f (buffer.length)

{
gc. renoveRange(buffer);
free(buffer);
buffer = null;
}
}
new(ui nt sz)
{ void *p;
p = &buffer[bufindex];
bufi ndex += sz;
i f (bufindex > buffer.!length)
t hr ow new Qut OF Menory;
return p;
}
del et e(voi d* p)
{
assert (0);
}
static int mark()
{
return bufindex;
}

129

The D Programming Language

static void release(int i)

bufi ndex = i;
}
}
void test ()
{
int m= Foo.mark();
Foo f1 = new Foo; // allocate
Foo f2 = new Foo; /1 allocate
#66.re|ease(n); /1 deallocate f1 and f2

}
» Theallocation of buffer[] itself is added as aregion to the gc, so thereisno need for a
separate call inside Foo.new() to do it.

RAIlI (Resource Acquisition Is Initialization)

RAII techniques can be useful in avoiding memory leaks when using explicit alocators and
deallocators. Adding the puto attributg to such classes can help.

Allocating Class Instances On The Stack

Allocating class instances on the stack is useful for temporary objects that are to be
automatically deallocated when the function is exited. No special handling is needed to
account for function termination via stack unwinding from an exception. To work, they must

not have destructors.
import c.stdlib

cl ass Foo

{

new(ui nt sz, void *p)

{
}

del et e(voi d* p)
{

}

return p;

assert (0);

}

void test ()
{

Foo f = new(c.stdlib.alloca(Foo.classinfo.init.length)) Foo;
}

« Thereisno need to check for afailure of alloca() and throw an exception, since by
definition alloca() will generate a stack overflow exception if it overflows.

« Thereisno need for acall to gc.addRange() or gc.removeRange() since the gc
automatically scans the stack anyway.

« Thedummy delete() function isto ensure that no attempts are made to del ete a stack
based object.

130

The D Programming Language

Floating Point

Floating Point Intermediate Values

On many computers, greater precision operations do not take any longer than lesser precision
operations, so it makes numerical sense to use the greatest precision available for internal
temporaries. The philosophy is not to dumb down the language to the lowest common
hardware denominator, but to enable the exploitation of the best capabilities of target
hardware.

For floating point operations and expression intermediate values, a greater precision can be
used than the type of the expression. Only the minimum precision is set by the types of the
operands, not the maximum. Implementation Note: On Intel x86 machines, for example, it is
expected (but not required) that the intermediate cal culations be done to the full 80 bits of
precision implemented by the hardware.

It's possible that, due to greater use of temporaries and common subexpressions, optimized
code may produce a more accurate answer than unoptimized code.

Algorithms should be written to work based on the minimum precision of the calculation.
They should not degrade or fail if the actual precision is greater. Float or double types, as
opposed to the extended type, should only be used for:

« reducing memory consumption for large arrays
+ dataand function argument compatibility with C

Complex and Imaginary types

In existing languages, there is an astonishing amount of effort expended in trying to jam a
complex type onto existing type definition facilities: templates, structs, operator overloading,
etc., and it all usually ultimately fails. It fails because the semantics of complex operations
can be subtle, and it fails because the compiler doesn't know what the programmer is trying to
do, and so cannot optimize the semantic implementation.

Thisisall doneto avoid adding a new type. Adding a new type means that the compiler can
make all the semantics of complex work "right". The programmer then can rely on a correct
(or at least fixable) implementation of complex.

Coming with the baggage of a complex type is the need for an imaginary type. An imaginary
type eliminates some subtle semantic issues, and improves performance by not having to
perform extra operations on the implied O real part.

Imaginary literals have an i suffix:
imaginary j = 1.3i;

There is no particular complex literal syntax, just add area and imaginary type:
conplex ¢ = 4.5 + 2i;

Adding two new types to the language is enough, hence complex and imaginary have
extended precision. Thereis no complex float or complex double type, and no imaginary float

131

The D Programming Language

or imaginary double. [NOTE: the door is open to adding them in the future, but | doubt there's
aneed|

Complex numbers have two properties:

.re get real part as an extended

.im get inmaginary part as an inmagi nary
For example:

c.re is 4.5

c.im is 2i

Rounding Control

|EEE 754 floating point arithmetic includes the ability to set 4 different rounding modes. D
adds syntax to access them: [blah, blah, blah] [NOTE: thisis perhaps better done with a
standard library call]

Exception Flags

|EEE 754 floating point arithmetic can set severa flags based on what happened with a
computation: [blah, blah, blah]. These flags can be set/reset with the syntax: [blah, blah, blah]
[NOTE: thisis perhaps better done with a standard library call]

Floating Point Comparisons

In addition to the usual < <= > >= == 1= comparison operators, D adds more that are specific
to floating point. These are [blah, blah, blah] and match the semantics for the NCEG

extensionsto C.
[insert table here]

132

The D Programming Language

D x86 Inline Assembler

being a systems programming language, provides an
inline assembler. The inline assembler is standardized for
D implementations across the same CPU family, for

N example, the Intel Pentium inline assembler for a Win32
W D compiler will be syntax compatible with theinline

(§l assembler for Linux running on an Intel Pentium.

Differing D implementations, however, are freeto
innovate upon the memory model, function call/return
conventions, argument passing conventions, etc.

This document describes the x86 implementation of the inline assembler.

Asml nstruction:
Identifier : Asm nstruction
al i gn I nteger Expression
even
naked
db Operands
ds Operands
di Operands
dl Operands
df Operands
dd Operands
de Operands
Opcode
Opcode Oper ands

Oper ands
Oper and
Operand , Operands

Labels

Assembler instructions can be labeled just like other statements. They can be the target of
goto statements. For example:

void *pc;

asm

call L1
L1:
pop EBX ;
nov pc[EBP] , EBX ; /1 pc now points to code at L1

align IntegerExpression

Causes the assembler to emit NOP instructions to align the next assembler instruction on an
Integer Expression boundary. Integer Expression must evaluate to an integer that is a power of
2.

133

http://www.digitalmars.com/gift/index.html

The D Programming Language

Aligning the start of aloop body can sometimes have a dramatic effect on the execution
Speed.

even

Causes the assembler to emit NOP instructions to align the next assembler instruction on an
even boundary.

naked

Causes the compiler to not generate the function prolog and epilog sequences. This means
such is the responsibility of inline assembly programmer, and is normally used when the
entire function is to be written in assembler.

db, ds, di, dl, df, dd, de

These pseudo ops are for inserting raw data directly into the code. db isfor bytes, dsisfor 16
bit words, di isfor 32 bit words, dl isfor 64 bit words, df isfor 32 bit floats, dd isfor 64 bit
doubles, and deisfor 80 bit extended reals. Each can have multiple operands. If an operand is
astring literal, it isasif there were length operands, where length is the number of characters
in the string. One character is used per operand. For example:

asm
{
db 5, 6, 0x83; /1 insert bytes 0x05, 0x06, and 0x83 into code
ds 0x1234; /1 insert bytes 0x34, 0x12
di 0x1234; /1 insert bytes 0x34, 0x12, 0x00, 0x00
dl 0x1234; /1 insert bytes 0x34, 0x12, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00
df 1.234; /1 insert float 1.234
dd 1.234; /1 insert double 1.234
de 1.234; /1 insert extended 1.234
db "abc"; /1 insert bytes 0x61, 0x62, and 0x63
ds "abc"; /1 insert bytes 0x61, 0x00, 0x62, 0x00, 0x63,
0x00
}
Opcodes

A list of supported opcodesis at the end.
The following registers are supported. Register names are always in upper case.

AL, AH, AX, EAX
BL, BH, BX, EBX

CL, CH, CX, ECX

DL, DH, DX, EDX

BP, EBP

SP,ESP

DI, EDI

S, ESl

ES, CS, SS, DS, GS, FS

CRO, CR2, CR3, CR4

DRO, DR1, DR2, DR3, DR6, DR7

TR3, TR4, TR5, TR6, TR7

ST

ST(0), ST(1), ST(2), ST(3), ST(4), ST(5), ST(6), ST(7)

134

The D Programming Language

MMO, MM1, MM2, MM 3, MM4, MM5, MM 6, MM 7

Special Cases

lock, rep, repe, repne, repnz, repz
These prefix instructions do not appear in the same statement as the instructions they
prefix; they appear in their own statement. For example:
asm
{
rep
novshb ;

pause
This opcode is not supported by the assembler, instead use
{
rep
nop

}

which produces the same resullt.
floating point ops

Use the two operand form of the instruction format;
fdiv ST(1); /1 wrong
ful ST; /1 wrong
fdiv ST,ST(1); // right
frmul ST, ST(O); // right

Operands

Qper and:
AsnmExp

AsmEXp:
AsnmLogOr Exp
AsnmLogOr Exp ? AsmExp @ AsnExp

AsmLogOr Exp:
Asm_ogAndExp
AsmLogAndExp || AsmiogAndExp

Asm_ogAndExp:
Asnr Exp
AsnOr Exp && AsnmOr Exp

Asnr Exp:
AsmXor Exp
AsmXor Exp | AsnXor Exp

AsmXor Exp:
AsmAndExp
AsmAndExp » AsmAndExp

AsmAndExp:
AsmEqual Exp
AsmEqual Exp & AsnEqual Exp

AsmEqual Exp:

AsmRel Exp
AsmRel Exp == AsnRel Exp

135

The D Programming Language

AsmRel Exp ! = AsnRel Exp

AsmRel Exp:
Asnthi ft Exp
AsnBhi ft Exp < AsnBhi ft Exp
AsnBhi ft Exp <= AsnBhi ft Exp
Asnhi ft Exp > Asnhi ft Exp
Asnhi ft Exp >= Asnthi ft Exp

Asnthi f t Exp:
AsmAddExp
AsmAddExp << AsnmAddExp
AsmAddExp >> AsnmAddExp
AsmAddExp >>> AsmAddExp

AsmAddExp:
Asmvul Exp
Asmvul Exp + Asnmivul Exp
Asmvul Exp - Asmvul Exp

Asmvul Exp:
AsnBr Exp
AsnBr Exp * AsnBr Exp
AsmBr Exp / AsnBr Exp
AsnBr Exp % AsnBr Exp

AsnBr Exp:
AsmUnaExp
AsmBr Exp [AsnExp]

AsmnaExp:

AsmTypePr efi x AsnExp
of f set AsmExp

seg AsnExp

+ AsnmnaExp

- AsnmnaExp

I AsnlnaExp

~ AsmnaExp

AsnPr i mar yExp

AsPr i mar yExp
I nt eger Const ant
FI oat Const ant
__LOCAL_SI ZE
$
Regi st er
Dot | denti fier

Dot | denti fi er
| dentifier
Identifier . Dotldentifier

The operand syntax more or less follows the Intel CPU documentation conventions. In
particular, the convention is that for two operand instructions the source is the right operand
and the destination is the left operand. The syntax differs from that of Intel'sin order to be
compatible with the D language tokenizer and to simplify parsing.

Operand Types

AsmTypePr ef i x:
near ptr
far ptr

136

The D Programming Language

byte ptr
short ptr
int ptr
word ptr
dword ptr
float ptr
doubl e ptr
ext ended ptr

In cases where the operand size |samb| guous, asin:
add [EAX], 3

it can be disambiguated by using an AsmTypePreflx:
add byte ptr [EAX], 3
add int ptr [EAX],7

Struct/Union/Class Member Offsets

To access members of an aggregate, given a pointer to the aggregate isin aregister, use the

gualified name of the member:
struct Foo { int a,b,c; }
int bar(Foo *f)
{

asm
{ nmov EBX, f

nov EAX, Foo. b[EBX]
}

Special Symbols

$
Represents the program counter of the start of the next instruction. So,
j m $
branches to the instruction following the jmp instruction.

__LOCAL_SIZE
This gets replaced by the number of local bytesin the local stack frame. It is most
handy when the naked isinvoked and a custom stack frame is programmed.

Opcodes Supported

aaa aad aam aas adc

add addpd addps addsd addss
and andnpd andnps andpd andps
arpl bound bsf bsr bswap

bt btc btr bts cal

cbw cdg clc cld clflush
cli clts cmc cmova cmovae
cmovb cmovbe cmovc cmove cmovg
cmovge cmovl cmovle cmovna cmovnae

137

The D Programming Language

cmovnb cmovnbe cmovnc cmovne cmovng
cmovnge | cmovnl cmovnle cmovno cmovnp
cmovns cmovnz cmovo cmovp cmovpe
cmovpo cmovs cmovz cmp cmppd
cmpps cmps cmpsb cmpsd cMpss
cmpsw cmpxch8b | cmpxchg comisd comiss
cpuid cvtdg2pd cvtdg2ps cvtpd2dg | cvtpd2pi
cvtpd2ps | cvtpi2pd cvtpi2ps cvtps2dg | cvtps2pd
cvtps2pi cvtsd2si cvtsd2ss cvtsi2sd Cvtsi2ss
cvtss2sd cvtss2si cvttpd2dg | cvttpd2pi | cvitps2dq
cvttps2pi | cvttsd2si cvttss2si cwd cwde
da daa das db dd

de dec df di div
divpd divps divsd divss dl

dq ds dt dw emms
enter f2xm1 fabs fadd faddp
fbld fbstp fchs fclex fcmovb
fcmovbe | fcmove fcmovnb fcmovnbe | fcmovne
fcmovnu | fcmovu fcom fcomi fcomip
fcomp fcompp fcos fdecstp fdiv
fdivp fdivr fdivrp ffree fiadd
ficom ficomp fidiv fidivr fild
fimul fincstp finit fist fistp
fisub fisubr fld fldl fldew
fldenv fldli2e fldi2t fldig2 fldin2
fldpi fldz fmul fmulp fnclex
fninit fnop fnsave fnstcw fnstenv
fnstsw fpatan fprem fpreml fptan
frndint frstor fsave fscale fsetpm
fsin fsincos fsort fst fstew
fstenv fstp fstsw fsub fsubp
fsubr fsubrp ftst fucom fucomi
fucomip fucomp fucompp fwait fxam

138

The D Programming Language

fxch fxrstor fxsave fxtract fyl2x
fyl2xpl hit idiv imul in

inc ins insb insd insw

int into invd invlipg iret

iretd ja jae jb jbe

jc jexz je jecxz ig

joge jl jle jmp jna

jnae jnb jnbe jnc jne

jng jnge jnl jnle jno

jnp jns jnz jo jp

jpe jpo is jz lahf

lar ldmxcsr lds lea leave
les Ifence Ifs |gdt lgs

lidt lldt Imsw lock lods
lodsb lodsd lodsw loop loope
loopne loopnz loopz Isl Iss

Itr maskmovdqu | maskmovq | maxpd maxps
maxsd maxss mfence minpd minps
minsd minss mov movapd movaps
movd movdg2q movdga movdqgu movhlps
movhpd movhps movlhps movlpd movIps
movmskpd | movmskps | movntdq movnti movntpd
movntps | movntq movq movg2dq | movs
movsb movsd movss movsw MovsX
movupd movups movzx mul mulpd
mulps mulsd mulss neg nop

not or orpd orps out

outs outsb outsd outsw packssdw
packsswb | packuswb paddb paddd paddq
paddsb paddsw paddusb paddusw | paddw
pand pandn pavgb pavgw pcmpegb
pcmpeqd | pcmpeqw pcmpgtb pcmpgtd pcmpgtw
pextrw pinsrw pmaddwd | pmaxsw pmaxub

139

The D Programming Language

pminsw pminub pmovmskb | pmulhuw | pmulhw
pmullw pmuludg pop popa popad
popf popfd por prefetchnta | prefetchtO
prefetchtl | prefetcht2 psadbw pshufd pshufhw
pshuflw pshufw pslid pslidg psllq
psliw psrad psraw psrid psridg
psrlg psriw psubb psubd psubq
psubsb psubsw psubusb psubusw | psubw
punpckhbw | punpckhdq | punpckhqgdq | punpckhwd | punpcklbw
punpcklidg | punpcklgdq | punpcklwd | push pusha
pushad pushf pushfd pxor rcl
rcpps rcpss rer rdmsr rdpmc
rdtsc rep repe repne repnz
repz ret retf rol ror

rsm rsqrtps rsqrtss sahf sa

sar sbb scas scasb scasd
scasw Seta Setae setb Setbe
setc sete setg setge Setl
setle setna setnae setnb setnbe
setnc setne setng setnge setnl
setnle setno setnp setns setnz
seto setp setpe setpo sets
Setz sfence sgdt shl shid
shr shrd shufpd shufps sidt
sdt smsw sgrtpd sqrtps sgrtsd
sgrtss stc std sti stmxcsr
stos stosb stosd stosw str

sub subpd subps subsd subss
sysenter sysexit test ucomisd ucomiss
ud2 unpckhpd unpckhps | unpckipd | unpcklips
verr verw wait wbinvd wrmsr
xadd xchg xlat xlatb xor
xorpd XOrps

140

The D Programming Language

AMD Opcodes Supported

pavgusb | pf2id pfacc pfadd |pfcmpeq

pfcmpge | pfcmpgt | pfmax | pfmin | pfmul

pfnacc | pfpnacc | pfrcp | pfrcpitl | pfrepit2

pfrsqitl |pfrsgrt | pfsub |pfsubr |pi2fd

pmulhrw | pswapd

141

The D Programming Language

Interfacingto C

D isdesigned to fit comfortably with a C compiler for the target system. D makes up for not
having its own VM by relying on the target environment's C runtime library. It would be
senseless to attempt to port to D or write D wrappers for the vast array of C APIs available.
How much easier it isto just call them directly.

Thisis done by matching the C compiler's data types, layouts, and function call/return
sequences.

Calling C Functions

C functions can be called directly from D. Thereis no need for wrapper functions, argument
swizzling, and the C functions do not need to be put into a separate DLL.

The C function must be declared and given a calling convention, most likely the "C" calling
convention, for example:

extern (C) int strcrmp(char *stringl, char *string2);
and then it can be called within D code in the obvious way:

i mport string;

int myDfunction(char[] s)

{

}

There are several things going on here:

return strcnp(string.toCharz(s), "foo\0");

« D understands how C function names are "mangled" and the correct C function
call/return sequence.

« Cfunctions cannot be overloaded with another C function with the same name.

« Thereareno _cdecl, far, stdcall, declspec, or other such C type modifiersin
D. These are handled by attributes, such asextern (C).

« Thereare no const or volatile type modifiersin D. To declare a C function that uses
those type modifiers, just drop those keywords from the declaration.

« Stringsare not O terminated in D. See "Data Type Compatibility" for more
information about this.

C code can correspondingly call D functions, if the D functions use an attribute that is

compatible with the C compiler, most likely the extern (C):
/1 nyfunc() can be called fromany C function
extern (O

{
void nyfunc(int a, int b)

142

The D Programming Language

Storage Allocation

C code explicitly manages memory with calls to malloc() and free(). D alocates memory
using the D garbage collector, so no explicit free's are necessary.

D can still explicitly allocate memory using c.stdlib.malloc() and c.stdlib.free(), these are
useful for connecting to C functions that expect malloc'd buffers, etc.

If pointersto D garbage collector allocated memory are passed to C functions, it's critical to
ensure that that memory will not be collected by the garbage collector before the C functionis
done with it. Thisis accomplished by:

Making a copy of the data using c.stdlib.malloc() and passing the copy instead.
Leaving apointer to it on the stack (as a parameter or automatic variable), asthe
garbage collector will scan the stack.

Leaving apointer to it in the static data segment, as the garbage collector will scan the
static data segment.

Registering the pointer with the garbage collector with the gc.addRoot() or
gc.addRange() calls.

Aninterior pointer to the allocated memory block is sufficient to let the GC know the object is
inuse; i.e. it isnot necessary to maintain a pointer to the beginning of the allocated memory.

The garbage collector does not scan the stacks of threads not created by the D Thread
interface. Nor does it scan the data segments of other DLL's, etc.

Data Type Compatibility

D type C type
void void
bit no equivalent
byte signed char
ubyte unsigned char
char char (charsare unsigned in D)
wchar wchar _t
short short
ushort unsigned short
int int
uint unsigned
long long long
ulong unsigned long long
float float
double double

143

The D Programming Language

extended long double

imaginary long double _Imaginary
complex long double _Complex
type* type*

type[dim] type[dim]

type|] no equivalent

type[type] no equivalent

"string\0" "string" or L"string"
class no equivalent

type(*)(parameters) | type(*)(parameters)

These equivalents hold for most 32 bit C compilers. The C standard does not pin down the
sizes of the types, so some care is heeded.

Calling printf()

This mostly means checking that the printf format specifier matches the corresponding D data
type. Although printf is designed to handle O terminated strings, not D dynamic arrays of
chars, it turns out that since D dynamic arrays are alength followed by a pointer to the data,

the % *s format works perfectly:
void foo(char[] string)

{
printf("my string is: %*s\n", string);

Astute readers will notice that the printf format string literal in the example doesn't end with
\O. Thisis because string literals, when they are not part of an initializer to alarger data
structure, have a\O character helpfully stored after the end of them.

Structs and Unions

D structs and unions are analogous to C's.

C code often adjusts the alignment and packing of struct members with acommand line
switch or with various implementation specific #pragma's. D supports explicit alignment
attributes that correspond to the C compiler's rules. Check what alignment the C code is using,
and explicitly set it for the D struct declaration.

D does not support bit fields. If needed, they can be emulated with shift and mask operations.

144

The D Programming Language

Interfacing to C++

D does not provide an interface to C++. Since D, however, interfaces directly to C, it can
interface directly to C++ code if it is declared as having C linkage.

D class objects are incompatible with C++ class objects.

145

The D Programming Language

Portability Guide

It's good software engineering practice to minimize gratuitous portability problemsin the
code. Techniques to minimize potential portability problems are:

The integral and floating type sizes should be considered as minimums. Algorithms
should be designed to continue to work properly if the type size increases.
The wchar type can be either 2 or 4 bytes wide in current implementations; future
implementations can increase the size further.
Floating point computations can be carried out at a higher precision than the size of
the floating point variable can hold. Floating point algorithms should continue to work
properly if precision is arbitrarilly increased.
Avoid depending on the order of side effects in a computation that may get reordered
by the compiler. For example:

a+hb+c

can beevaluated as(a+b) +c,a+ (b +c¢), (a+c) + b, (c + b) + g, etc. Parenthesis
control operator precedence, parenthesis do not control order of evaluation.

In particular, function parameters can be evaluated either left to right or right to left,
depending on the particular calling conventions used.

Avoid dependence on byte order; i.e. whether the CPU is big-endian or little-endian.

Avoid dependence on the size of a pointer or reference being the same sizeasa

particular integral type.

If size dependencies are inevitable, put an assert in the code to verify it:
assert(int.size == (int*).size);

OS Specific Code

System specific code is handled by isolating the differences into separate modules. At
compile time, the correct system specific module is imported.

Minor differences can be handled by constant defined in a system specific import, and then
using that constant in an if statement.

146

The D Programming Language

EmbeddingD inHTML

The D compiler is designed to be able to extract and compile D code embedded within HTML
files. This capability means that D code can be written to be displayed within a browser
utilizing the full formatting and display capability of HTML.

For example, it is possible to make all uses of a class name actually be hyperlinks to where
the classis defined. There's nothing new to learn for the person browsing the code, he just
uses the normal features of an HTML browser. Strings can be displayed in green, comments
in red, and keywords in boldface, for one possibility. It is even possible to embed picturesin
the code, as normal HTML image tags.

Embedding D in HTML makes it possible to put the documentation for code and the code
itself al together in onefile. It is no longer necessary to rel egate documentation in comments,
to be extracted later by atech writer. The code and the documentation for it can be maintained
simultaneously, with no duplication of effort.

How it works is straightforward. If the source file to the compiler endsin .htm or .html, the
code is assumed to be embedded in HTML. The source is then preprocessed by stripping all
text outside of <code> and </code> tags. Then, al other HTML tags are stripped, and
embedded character encodings are converted to ASCII. All newlinesin the origina HTML
remain in their corresponding positions in the preprocessed text, so the debug line numbers
remain consistent. The resulting text is then fed to the D compiler.

Here's an example of the D program "hello world" embedded in thisvery HTML file. Thisfile
can be compiled and run.

i mport Obj ect;
i mport stdio;

int mai n()

printf("hello world\n");
return O;

}

147

The D Programming Language

D Runtime M odd

Object Model

An obj ect consists of:

of fset contents

0: pointer to vtable
4: noni t or
8... non-static nenbers

The vtabl e consists of:

0: poi nter to instance of C asslLayout
4. .. pointers to virtual nenber functions
Array Model
A dynam c array consists of:
0: pointer to array data
4. array di mension

A dynam c array is declared as:

type array[];

whereas a static array is declared as:
type array[di mension];

Thus, a static array always has the dinmension statically available as part
of the type, and

so it is inplenented like in C. Static array's and Dynam c arrays can be
easilly converted back

and forth to each other.

Ref erence Types

D has reference types, but they are inplicit. For exanmple, classes are

al ways

referred to by reference; this neans that class instances can never reside
on the stack

or be passed as function paraneters.

VWhen passing a static array to a function, the result, although declared as
a static array, wll
actually be a reference to a static array. For exanple:

i nt abc[3];

Passing abc to functions results in these inplicit conversions:

void func(int array[3]); // actually

void func(int *p); /] abc[3] is converted to a pointer to the
first el enent

void func(int array[]); /1 abc[3] is converted to a dynami c array

148

The D Programming Language

Cl ass Mbdel

The class definition:

cl ass XXXX

{

b

CGenerates the foll ow ng:

0] An instance of Class called O assXXXX.

o] A type called StaticC assXXXX which defines all the static nenbers.
o] An instance of StaticClassXXXX called Stati cXXXX for the static
menbers.

149

The D Programming Language

Phobos
D RuntimeLibrary

Phobos is the standard runtime library that comes with the D language compiler.

Philosophy

Each module in Phobos conforms as much as possible to the following design goals. These

are goals rather than requirements because D is hot areligion, it's a programming language,

and it recognizes that sometimes the goals are contradictory and counterproductive in certain

situations, and programmers have jobs that need to get done.

Machine and Operating System Independent Interfaces
It's pretty well accepted that gratuitous non-portability should be avoided. This should
not be construed, however, as meaning that access to unusual features of an operating
system should be prevented.

Simple Operations should be Simple
A common and simple operation, like writing an array of bytesto afile, should be
simpleto code. | haven't seen aclass library yet that smply and efficiently
implemented common, basic file I/O operations.

Classes should strive to be independent of one another
It's discouraging to pull in a megabyte of code bloat by just trying to read afile into an
array of bytes. Class independence also means that classes that turn out to be mistakes
can be deprecated and redesigned without forcing arewrite of the rest of the class
library.

No pointless wrappers around C runtime library functions or OS API functions
D provides direct access to C runtime library functions and operating system API
functions. Pointless D wrappers around those functions just adds blather, bloat,
baggage and bugs.

No user interface windowing classes
GUI styles, philosophies, etc., are not portable from machine to machine. A GUI
Windows app should look like a Windows app when running on a Windows machine.
It should not look and feel like aMac app unlessit isrunning on aMac. Attempts to
create acommon GUI class library between Windows, Mac, and other GUI operating
systems have all to my knowledge failed.
Java has a successful GUI class library, but does so by creating its own GUI with its
own look and feel. This approach is fine for a web language, but not for a systems
language like D is.
Windowing class libraries should be separate.

Class implementations should use DBC
Thiswill prove that DBC (Design by Contract) is worthwhile. Not only will it aid in
debugging the class, but it will help every class user use the class correctly. DBC in
the classlibrary will have great leverage.

Use Exceptions for Error Handling
SeeError Handling in D}

Imports
Each of these can be imported with the import statement. The categories are:

150

The D Programming Language

Core D: Available on all D implementations

ompiler
Information about the D compiler implementation.

Conversion of strings to integers.

Simple character classification
Date and time functions. Support locales.
Basic file operations like read, write, append.

Control the garbage collector.

el BB g E

Include al the usual math functions like sin, cos, atan, etc.

:

Theroot class of the inheritance heirarchy

@)
c
—
o
c
=1
=
Q

Assemble datainto an array of bytes

O
2
=y

Manipulate file names, path names, etc.
pr OC

i

Create/destroy threads.

3
(3
o
3

Random number generation.

The usual regular expression functions.

/)

H ..'
5 .
—

Integral types for various purposes.

Stream 1/0.

/)
O

|

Basic string operations not covered by array ops.

i

Inquire about the CPU, operating system.

=)
3
g

One per thread. Operations to do on athread.
Manipulate zip files.

Standard C: interface to C functions

Interface to C stdio functions like printf().

Compiler built in intrinsic functions
windows
Interface to Windows APIs

151

The D Programming Language

compiler

char[] name;
Vendor specific string naming the compiler, for example: "Digital Mars D".
enum Vendor
Master list of D compiler vendors.
DigitalMars
Digital Mars
Vendor vendor;
Which vendor produced this compiler.
uint version_major;
uint version_minor;
The vendor specific version number, asin version_major.version_minor.
uint D_major;
uint D_minor;
The version of the D Programming Language Specification supported by the compiler.

conv

conv provides basic building blocks for conversions from strings to integral types. They differ
from the C functionsat oi () and at ol () by not allowing whitespace or overflows.

For conversion to signed types, the grammar recognized is.

I nt eger:
Si gn Unsi gnedl nt eger
Unsi gnedl nt eger

Si gn:
+

For conversion to unsigned types, the grammar recognized is.
Unsi gnedl nt eger:
Deci el Di gi t
Deci mal Di git Unsi gnedl nt eger

Any deviation from that grammar causes a ConvError exception to be thrown. Any
overflows cause a ConvOverflowError to be thrown.

byte toByte(char[] s)

ubyte toUbyte(char[] s)

short toShort(char[] s)

ushort toUshort(char[] s)

int tol nt(char[] s)

uint toUint(char[] s)

long toL ong(char[] s)

ulong toUlong(char[] s)

ctype
int isalnum(char c)

Returns!=0 if cisaletter or adigit.
int isalpha(char c)

152

The D Programming Language

Returns!'=0if cisan upper or lower case |etter.
int iscntrl(char c)
Returns!'=0if cisacontrol character.
int isdigit(char c)
Returns!=0if cisadigit.
int isgraph(char c)
Returns =0 if cisaprinting character except for the space character.
int islower (char c)
Returns!=0if cislower case.
int isprint(char c)
Returns =0 if cisaprinting character or a space.
int ispunct(char c)
Returns =0 if ¢ is a punctuation character.
int isspace(char c)
Returns =0 if cisaspace, tab, vertical tab, form feed, carriage return, or linefeed.
int isupper (char c)
Returns =0 if cisan upper case character.
int isxdigit(char c)
Returns!=0if cisahex digit (0..9, a.f, A..F).
int isascii(uint c)
Returns!=0if cisinthe ascii character set.
char tolower (char c)
If cisupper case, return the lower case equivalent, otherwise return c.
char toupper (char c)
If cislower case, return the upper case equivalent, otherwise return c.

date

Dates are represented in several formats. The date implementation revolves around a central

type, d_time, from which other formats are converted to and from.

typedef d_time
Is asigned arithmetic type giving the time elapsed since January 1, 1970. Negative
values are for dates preceding 1970. The time unit used is Ticks. Ticks are
milliseconds or smaller intervals.

The usual arithmetic operations can be performed on d_time, such as adding,
subtracting, etc. Elapsed time in Ticks can be computed by subtracting a starting
d_timefrom an ending d_time.

Aninvalid value for d_timeisrepresented by d_time.init.

int TicksPer Second
A constant giving the number of Ticks per second for thisimplementation. It will be at
least 1000.

char[] toString(d_timet)
Convertst into atext string of the form: "Www Mmm dd hh:mm:ss GMT+-TZ yyyy",
for example, "Tue Apr 02 02:04:57 GMT-0800 1996". If tisinvalid, "Invalid date" is
returned.

char[] toDateString(d_timet)
Converts the date portion fo t into atext string of the form: "Www Mmm dd yyyy",
for example, "Tue Apr 02 1996". If tisinvalid, "Invalid date" is returned.

153

The D Programming Language

char[] toTimeString(d_timet)
Converts the time portion of t into atext string of the form: "hh:mm:ssGMT+-TZ",
for example, "02:04:57 GMT-0800". If tisinvalid, "Invalid date" is returned.
d_time par se(char|] s)
Parses s as atextual date string, and returnsit asad_time. If the string isnot avalid
date, d_tine.init isreturned.
d_time getUT Ctime()
Get current UTC time.
d_time UTCtoL ocal Time(d_timet)
Convert from UTC time to local time.
d timeLocal TimetoUTC(d_timet)
Convert from local timeto UTC time.

file
class FileException
Exception thrown if file 1/O errors.
byte[] read(char[] name)
Read file name[], return array of bytes read.
void write(char[] name, byte[] buffer)
Write buffer[] to file namg[] .
void append(char[] name, byte[] buffer)
Append buffer[] to file name]] .
void rename(char[] from, char[] to)
Rename file from[] toto[].
void remove(char[] name)
Delete file name|].
uint getSize(char[] name)
Get size of file name]] .
uint getAttributes(char[] name)
Get file namg[] attributes.

gc
The garbage collector normally works behind the scenes without needing any specific
interaction. These functions are for advanced applications that benefit from tuning the
operation of the collector.
class OutOfMemory
Thrown if garbage collector runs out of memory.
void addRoot(void *p)
Add pto list of roots. Roots are references to memory allocated by the collector that
are maintained in memory outside the collector pool. The garbage collector will by
default look for roots in the stacks of each thread, the registers, and the default static
data segment. If roots are held elsewhere, use addRoot () or addRange() to tell the
collector not to free the memory it points to.
void removeRoot(void *p)
Remove p from list of roots.
void addRange(void * pbot, void * ptop)
Add range to scan for roots.
void removeRange(void * pbot)
Remove range.

154

The D Programming Language

void fullCollect()
Run afull garbage collection cycle. The collector normally runs synchronously with a
storage allocation request (i.e. it never happens when in code that does not allocate
memory). In some circumstances, for example when a particular task isfinished, it is
convenient to explicitly run the collector and free up all memory used by that task. It
can also be helpful to run a collection before starting a new task that would be
annoying if it ran acollection in the middle of that task. Explicitly running a collection
can also be done in a separate very low priority thread, so that if the program isidly
waiting for input, memory can be cleaned up.

void genCollect()
Run a generational garbage collection cycle. Takes less time than afullCollect(), but
isn't as effective.

void minimize()
Minimize physical memory usage.

void disable&()
Temporarilly disable garbage collection cycle. Thisis used for brief time critical
sections of code, so the amount of timeit will take is predictable. If the collector runs
out of memory whileit isdisabled, it will throw an OutOfM emory exception. The
disable() function calls can be nested, but must be matched with corresponding
enable() calls.

void enable()
Reenabl e garbage collection cycle after being disabled with disable(). It is an error to
call more enable()s than disableg()s.

intrinsic
Intrinsic functions are functions built in to the compiler, usually to take advantage of specific
CPU features that are inefficient to handle via externa functions. The compiler's optimizer
and code generator are fully integrated in with intrinsic functions, bringing to bear their full
power on them. This can result in some surprising speedups.
int bsf(uint v)
Scans the bitsin v starting with bit O, looking for the first set bit.
int bsr(uint v)
Scans the bitsin v from the most significant bit to the least significant bit, looking for
the first set bit.

Both return the bit number of the first set bit. The return value is undefined if vis zero.

Example

i mport intrinsic;

int main()
t
uint v;
int x;

Y 0x21,;

X bsf (v);
printf("bsf(x%)
X = bsr(v);
printf("bsr(x%)

%\ n", v, X);

%\ n", v, X);

155

The D Programming Language

return O;
}
Output
bsf(x21) =0
bsr(x21) =5

int bt(uint *p, uint index)

Tests the bit.
int btc(uint *p, uint index)

Tests and complements the bit.
int btr (uint *p, uint index)

Tests and resets (sets to 0) the bit.
int bts(uint *p, uint index)

Tests and sets the bit.

pisanon-NULL pointer to an array of uints. index is a bit number, starting with bit O
of p[Q], and progressing. It addresses bits like the expression:

p[index / (uint.size*8)] & (1 << (index & ((uint.size*8) - 1)))

All return anon-zero valueif the bit was set, and azero if it was clear.

Example

i mport intrinsic;

int main()

{
uint array[2];
array[0] = 2;
array[1] = 0x100;
printf("btc(array, 35) = %\n", btc(array, 35));
printf("array = [0]:x%, [1]:x%\n", array[0], array[1]);
printf("btc(array, 35) = %\n", btc(array, 35));
printf("array = [0]:x%, [1]:x%\n", array[O0], array[1]);
printf("bts(array, 35) = %\n", bts(array, 35));
printf("array = [0]:x%, [1]:x%\n", array[O0], array[1]);
printf("btr(array, 35) = %\n", btr(array, 35));
printf("array = [0]:x%, [1]:x%\n", array[O0], array[1]);
printf("bt(array, 1) = %\n", bt(array, 1));
printf("array = [0]:x%, [1]:x%\n", array[0], array[1]);
return O;

}

Output

btc(array, 35) =0
array = [0]:x2, [1]:x108

156

The D Programming Language

btc(array, 35) = -1
array = [0]:x2, [1]:x100
bts(array, 35) =0
array = [0]:x2, [1]:x108
btr(array, 35) = -1
array = [0]:x2, [1]:x100
bt(array, 1) = -1
array = [0]:x2, [1]:x100
ubyte inp(uint port_address)
ushort inpw(uint port_address)
uint inpl(uint port_address)
Reads 1/0 port at port_address.
ubyte outp(uint port_address, ubyte value)
ushort outpw(uint port_address, ushort value)
uint outpl(uint port_address, uint value)
Writes and returns value to 1/0O port at port_address.
real cos(real)
real fabs(real)
real rint(real)
long rndtol(real)
real sin(real)
real sgrt(real)
Intrinsic verions of the math functions of the same name.

math

const real Pl

const real LOG2

const real LN2

const real LOG2T

const real LOG2E

const real E

const real LOG10E

const real LN10

const real PlI_2

const real Pl_4

constreal M_1 PI

const real M_2 Pl

const real M_2 SQRTPI

const real SQRT2

const real SQRT1 2
Math constants.

real acos(real)

real asin(real)

real atan(real)

real atan2(real, real)

real cos(real x)
Compute cosine of x. X isin radians.
Specia values:

X return value|invalid?
+INFINITY [NAN yes

157

The D Programming Language

real sin(rea x)
Compute sine of x. X isin radians.
Specia values:

X
+0.0
*INFINITY

real tan(real x)
Compute tangent of x. xisin radians.

return value|invalid?
+0.0

NAN

no

Yyes

Specia values:

X return value invalid?
+0.0 0.0 no
INFINITY | NAN yes

real cosh(real)
real sinh(real)
real tanh(real)
real exp(real)

real frexp(real value, out int exp)
Calculate and return x and exp such that:

value=x* 2%
S5<=x<10
X has same sign as value.
Special values:

value X exp
+-0.0 +-0.0 0
+INFINITY | +INFINITY |int.max
-INFINITY | -INFINITY |int.min
+-NAN +-NAN int.min

real [dexp(rea n, int exp)

Computen » 2exp

real log(real x)

Calculate the natural logarithm of x.
Special values:
X return value divide by 0? | invalid?
+0.0 -INFINITY |yes no
<0.0 NAN no yes
+INFINITY | +INFINITY | no no
real loglO(real x)
Calculate the base-10 logarithm of x.
Special values:
X return value divide by 0? | invalid?
+0.0 -INFINITY |yes no

158

The D Programming Language

<00 NAN no yes
+INFINITY | +INFINITY | no no
real modf(real, real *)
real pow(real, real)
real sgrt(real x)
Compute square root of X.
Specia values:
X return value|invalid?
-0.0 -0.0 no
<0.0 NAN yes
+INFINITY | +INFINITY | no
real ceil(real)

real floor (real)

real loglp(real x)
Calculates the natural logarithm of 1 + x. For very small x, loglp(x) will be more
accurate than log(1 + x).

Specia values:

X loglp(x) |divideby 0?|invalid?
+0.0 0.0 no no
-10 -INFINITY | yes no
<-1.0 NAN no yes
+INFINITY | -INFINITY | no no

real expml(real x)
Calculates the value of the natural logarithm base (€) raised to the power of x, minus 1.
For very small x, expm1(x) is more accurate than exp(x)-1.
Specia values:

X e-1
+0.0
+INFINITY
-1.0

+0.0
+INFINITY

-INFINITY

real atof(char *)
Math functions.
real hypot(rea x, rea y)
Calculates the length of the hypotenuse of aright-angled triangle with sides of length x
and y. The hypotenuse is the value of the square root of the sums of the squares of x
andy:
sqrt (x? + y?)
Note that hypot(x,y), hypot(y,x) and hypot(x,-y) are equivalent.
Special values:

X y
X +-0.0

return value | invalid?

fabs(x)

no

159

The D Programming Language

+INFINITY |y +INFINITY | no

+-INFINITY | NAN | +INFINITY |no

int isnan(real e)
Is number a nan?
intisfinite(real e)
Is number finite?
int isnormal(float f)
int isnormal(double d)
int isnormal(real e)
Is number normalized?
int issubnor mal(float f)
int issubnor mal (double d)
int issubnor mal(real €)
Is number subnormal? (Also called "denormal™.) Subnormals have a 0 exponent and a
0 most significant mantissa bit.
intisinf(real e)
Is number infinity?
int signbit(rea €)
Get sign hit.
real copysign(real to, rea from)
Copy sign.

object
This module isimplicitly imported.
class Object
All class objectsin D inherit from Object.
static int printf(char* format, ...);
C printf function.
char[] toString()
Convert Object to a human readable string.
uint toHash()
Compute hash function for Object.
int cmp(Object obj)
Compare with another Object obj. Returns:
<0 for (this < obj)
=0 for (this == obj)
>0 for (this> obj)
class Classinfo
Runtime type information about a class.
class Exception
All exceptions should be derived from class Exception.

outbuffer

class OutBuffer
OutBuffer provides away to build up an array of bytes out of raw data. It is useful for
things like preparing an array of bytesto write out to afile. OutBuffer's byte order is
the format native to the computer. To control the byte order (endianness), use a class

160

The D Programming Language

derived from OutBuffer. To convert an array of bytes back into raw data, use
InBuffer.

void reserve(uint nbytes)

Preall ocate nbytes more to the size of the internal buffer. Thisis a speed optimization,
agood guess at the maximum size of the resulting buffer will improve performance by
eliminating reallocations and copying.

void write(ubyte[] bytes)

void write(ubyte b)

void write(byte b)

void write(char c)

void write(ushort w)

void write(short)

void write(wchar c)

void write(uint w)

void write(int i)

void write(ulong I)

void write(long)

void write(float f)

void write(doublef)

void write(real f)

void write(char[] s)

void write(OutBuffer buf)

Append data to the internal buffer.

void fillO(uint nbytes)

Append nbytes of O to the internal buffer.

void alignSize(uint alignsize)

O-fill to align on an alignsize boundary. alignsize must be a power of 2.
void align2()

Optimize common specia case alignSize(2)

void align4()

Optimize common specia case alignSize(4)

ubytef] toBytes()

Convert internal buffer to array of bytes.

char[] toString()

Convert internal buffer to array of chars.

void vprintf(char[] format, va list args)

Append output of vprintf() to internal buffer.

void printf(char[] format, ...)

Append output of printf() to internal buffer.

void spread(uint index, uint nbytes)

At offset index into buffer, create nbytes of space by shifting upwards all data past
index.

path

const char[] sep;

Character used to separate directory namesin a path.
const char[] altsep;

Alternate version of sep[], used in Windows.
const char[] pathsep;

Path separator string.

161

The D Programming Language

const char[] linesep;
String used to separate lines.
const char[] curdir;
String representing the current directory.
const char[] pardir;
String representing the parent directory.
char[] getExt(char[] fullname)
Get extension. For example, "d:\path\foo.bat" returns "bat".
char[] getBaseName(char[] fullname)
Get base name. For example, "d:\path\foo.bat" returns "foo.bat".
char[] getDir Name(char[] fullname)
Get directory name. For example, "d:\path\foo.bat" returns "d:\path".
char[] getDrive(char[] fullname)
Get drive. For example, "d:\path\foo.bat" returns "d:". Returns null string on systems
without the concept of adrive.
char[] defaultExt(char[] fullname, char[] ext)
Put a default extension on fullname if it doesn't already have an extension.
char[] addExt(char[] fullname, char[] ext)
Add file extension or replace existing extension.
int isabs(char[] path)
Determine if absolute path name.
char[] join(char[] p1, char[] p2)
Join two path components.
int fnchar match(char c1, char c2)
Match file name characters. Case sensitivity depends on the operating system.
int fnmatch(char[] name, char[] pattern)
Match filename strings with pattern[], using the following wildcards:
* match O or more characters
? match any character
[chars] match any character that appears between the []
[!chars] match any character that does not appear between the[! |
Matching is case sensitive on afile system that is case sensitive.
Returns:
=0 match
0 no match

process

random

void rand_seed(uint seed, uint index)
The random number generator is seeded at program startup with arandom value. This
ensures that each program generates a different sequence of random numbers. To
generate arepeatable sequence, userand_seed() to start the sequence. seed and index
start it, and each successive value incrementsindex. This means that the nth random
number of the sequence can be directly generated by passing index + nto
rand_seed().

uint rand()
Get next random number in sequence.

162

The D Programming Language

regexp

RegEXxp isaD class to handle regular expressions. Regular expressions|are a powerful method
of string pattern matching. The RegEXxp classis the core foundation for adding powerful string
pattern matching capabilities to programs like grep, text editors, awk, sed, etc. The regular
expression language used is the same as that commonly used, however, some of the very
advanced forms may behave dightly differently.

The RegEXxp class has these methods:

this(char[] pattern, char[] attributes)
Create a new RegExp object. Compile pattern[] with attributeq[] into an internal
form for fast execution. Throws a RegExpError if there are any compilation errors.
char[][] split(char[] string)
Split string[] into an array of strings, using the regular expression as the separator.
Returns array of slicesin string[].
int sear ch(char[] string)
Search string[] for match with regular expression.

Returns| Description

>=0 index of match

-1 no match

char[][] match(char[] string)
Search string[] for match.

Attribute Returns

global same as call to exec(string)

not global | array of al matches

char[][] exec(char[] string)
Search string[] for next match. Returns array of slicesinto string[] representing
matches.

int test(char[] string)
Search string[] for next match.

Returns | Description

0 no match

1=0 match

char[] replace(char[] string, char[] format)
Find regular expression matchesin string[] . Replace those matches with a new string
composed of format[] merged with the result of the matches.

Attribute Action

global replace al matches

not global | replace first match

Returns the new string.

char[] replace(char|[] format)
After amatch isfound with test(), this function will take the match results and, using
the format[] string, generate and return a new string. The format commands are:

163

The D Programming Language

Format Description

$$ insert $

$& insert the matched substring

$ insert the string that precedes the match

$ insert the string that following the match

$n replace with the nth parenthesized match, nis1..9

$nn

replace with the nnth parenthesized match, nn is 01..99

$ insert $

char[] replaceOld(char[] format)

Like replace(char[] format), but uses old style formatting:

For mat Description
& replace with the match
\n replace with the nth parenthesized match, nis 1..9
\c replace with char c.
stdint

D constrains integral types to specific sizes. But efficiency of different sizes varies from
machine to machine, pointer sizes vary, and the maximum integer size varies. stdint offersa
portable way of trading off size vs efficiency, in amanner compatible with the st di nt . h

definitionsin C.

The exact aliases are types of exactly the specified number of bits. The at least aliases are at
least the specified number of bits large, and can be larger. The fast aliases are the fastest
integral type supported by the processor that is at least as wide as the specified number of bits.

The dliases are;

Exact _ At Least _ . _
Alias Description Alias Description Fast Alias Description
ing ¢ | SxalYBDbits g ¢ |ANSIBDItS g rogg ¢ | ESLBDILS
signed signed signed
uintg t | SRCUYBDIS iy ogg ¢ | AIBDIS 1y gagg ¢ | fASLBDILS
- unsigned - — |unsigned — — |unsigned
int1e ¢ | XUy 16DIts i oag1p ¢ [A1BSLI6DIS oy rog1p ¢ | fESL1GDILS
signed signed signed

164

The D Programming Language

uint16 t | SACUY16DIts L oagip ¢ | AICASLIGDItS | Ly cagi6 ¢ FESL16 Dt
unsigned unsigned unsigned
inzp t | SAY32DIS o oagap ¢ | AIEBII2DIS |y (agep ¢ | fESL 32Dt
Slgned Slgned ggned
uinz2_t | Sy 32DItS | iy oogap ¢ AN I2DIS |y fagay ¢ TaSL32bits
— |unsigned - — | unsigned — 94— unsigned
intea t | SAUYBADIS i 1 agea ¢ | AISBBADIS 1 cogeq ¢ | fESLOADILS
Slgned Slgned ggned
uintea t | AUYBADIS | uy | ogpy | AICBXOADIS | uy ragpy ¢ FASLOADILS
— [unsigned - — | unsigned — 7= unsigned

The ptr aliases are integral types guaranteed to be large enough to hold a pointer without

losing bits:
Alias Description
intptr_t | signed integral type large enough to hold a pointer

uintptr_t | unsigned integral type large enough to hold a pointer

The max aliases are the largest integral types:

Alias Description

intmax_t | thelargest signed integral type

uintmax_t | the largest unsigned integral type

stream

class Stream
Stream isthe base abstract class from which the other stream classes derive. Stream's
byte order is the format native to the computer.
bit readable
Indicates whether this stream can be read from.
bit writeable
Indicates whether this stream can be written to.
bit seekable
Indicates whether this stream can be seeked within.

Reading

These methods require that the readable flag be set. Problems with reading result in a
ReadError being thrown.
uint readBlock (void* buffer, uint size)
Read up to size bytesinto the buffer and return the number of bytes actually read.
void readExact(void* buffer, uint size)
Read exactly size bytesinto the buffer, throwing aReadError if it isnot correct.

165

The D Programming Language

uint read(ubyte[] buffer)
Read ablock of data big enough to fill the given array and return the actual number of
bytes read. Unfilled bytes are not modified.

void read(out byte x)

void read(out ubyte x)

void read(out short x)

void read(out ushort x)

void read(out int x)

void read(out uint x)

void read(out long x)

void read(out ulong x)

void read(out float x)

void read(out double x)

void read(out real x)

void read(out ireal x)

void read(out creal x)

void read(out char x)

void read(out wchar x)

void read(out char[] s)

void read(out wchar[] s)
Read a basic type or counted string, throwing aReadError if it could not be read.
Outside of byte, ubyte, and char, the format is implementation-specific and should not
be used except as opposite actionsto write.

char[] readLine&()

wchar[] readLineW()
Read aline that is terminated with some combination of carriage return and line feed
or end-of-file. The terminators are not included. The wchar version isidentical.

char[] readString(uint length)
Read a string of the given length, throwing ReadError if there was a problem.

wchar[] readStringW (uint length)
Read a string of the given length, throwing ReadError if there was a problem. The
file format is implementation-specific and should not be used except as opposite
actionsto write.

char getc()

wchar getcw()
Read and return the next character in the stream. Thisis the only method that will
handle ungetc properly. getcw's format is implementation-specific.

char ungetc(char c)

wchar ungetcw(wchar ¢)
Push a character back onto the stream. They will be returned in first-in last-out order
from getc/getcw.

int scanf(char[] fmt, ...)

int vscanf(char[] fmt, va_list args)
Scan a string from the input using a similar form to C's scanf.

Writing
These methods require that the writeable flag be set. Problems with writing result in a
WriteError being thrown.

uint writeBlock(void* buffer, uint size)
Write up to size bytes from buffer in the stream, returning the actual number of bytes
that were written.

166

The D Programming Language

void writeExact(void* buffer, uint size)
Write exactly size bytes from buffer, or throw aWriteError if that could not be done.

uint write(ubytef] buffer)
Write as much of the buffer as possible, returning the number of bytes written.

void write(byte x)

void write(ubyte x)

void write(short x)

void write(ushort x)

void write(int x)

void write(uint x)

void write(long x)

void write(ulong x)

void write(float x)

void write(double x)

void write(real x)

void write(ireal x)

void write(crea x)

void write(char x)

void write(wchar x)

void write(char[] 9)

void write(wchar[] s)
Write a basic type or counted string. Outside of byte, ubyte, and char, the format is
implementation-specific and should only be used in conjunction with read.

void writeL ine(char[] s)
Write aline of text, appending the line with an operating-system-specific line ending.

void writeL ineW (wchar[] s)
Write aline of text, appending the line with an operating-system-specific line ending.
The format is implementation-specific.

void writeString(char[] s)
Write a string of text, throwing WriteError if it could not be fully written.

void writeStringW (wchar[] s)
Write a string of text, throwing WriteError if it could not be fully written. The format
is implementation-dependent.

uint printf(char[] format, ...)

uint vprintf(char[] format, va list args)
Print aformatted string into the stream using printf-style syntax, returning the number
of bytes written.

void copyFrom(Stream s)
Copies all datafrom sinto this stream. This may throw ReadError or WriteError on
failure. This restores the file position of s so that it is unchanged.

void copyFrom(Stream s, uint count)
Copy a specified number of bytes from the given stream into this one. This may throw
ReadError or WriteError on falure. Unlike the previous form, this doesn't restore
the file position of s.

Seeking

These methods require that the seekable flag be set. Problems with seeking result in a
SeekError being thrown.

ulong seek (long offset, SeekPos whence)
Change the current position of the stream. whence is either SeekPos.Set, in which case
the offset is an absolute index from the beginning of the stream, SeekPos.Current, in

167

The D Programming Language

which case the offset is a delta from the current position, or SeekPos.End, in which
case the offset is a delta from the end of the stream (negative or zero offsets only make
sense in that case). This returns the new file position.

ulong seek Set(long offset)

ulong seek Cur (long offset)

ulong seek End(long offset)
Aliases for their normal seek counterparts.

ulong position()

void position(ulong pos)
Retrieve or set the file position, identical to calling seek(0, SeekPos. Current) or
seek(pos, SeekPos. Set) respectively.

ulong size()
Retrieve the size of the stream in bytes.

bit eof()
Return whether the current file position is the same as the end of the file. This does not
require actually reading past the end of the file, as with stdio.

char[] toString()
Read the entire stream and return it as a string.

uint toHash()
Get a hash of the stream by reading each byte and using it in a CRC-32 checksum.

classFile: Stream
This subclassisfor file system streams.

this()

this(char[] filename)

this(char[] filename, FileMode mode)
Create the stream with no open file, an open file in read and write mode, or an open
filewith explicit file mode. mode, if given, isacombination of FileM ode.In
(indicating afile that can be read) and FileM ode.Out (indicating afile that can be
written). If the file does not exist, it is created.

void open(char[] filename)

void open(char[] filename, FileMode mode)
Open afilefor the stream, in an identical manner to the constructors.

void create(char[] filename)

void create(char[] filename, FileMode mode)
Create afilefor the stream.

void closg()
Close the current file if it is open; otherwise it does nothing.

uint readBlock (void* buffer, uint size)

uint writeBlock(void* buffer, uint size)

ulong seek (long offset, SeekPosrel)
Overrides of the Stream methods.

classMemoryStream : Stream
This subclass reads and constructs an array of bytesin memory.
this()

this(ubyte[] data)
Create the output buffer and setup for reading, writing, and seeking. The second

constructor loads it with specific input data.

ubyte[] data()
Get the current memory datain total.

168

The D Programming Language

uint readBlock (void* buffer, uint size)
uint writeBlock(void* buffer, uint size)
ulong seek (long offset, SeekPos rel)
char[] toString()

Overrides of Stream methods.

class SliceStream : Stream
This subclass dlices off a portion of another stream, making seeking relative to the
boundaries of the slice. It could be used to section alarge file into a set of smaller
files, such aswith tar archives.

this(Stream base, int low)
Indicate both the base stream to use for reading from and the low part of the slice. The
high part of the slice is dependent upon the end of the base stream, so that if you write
beyond the end it resizes the stream normally.

this(Stream base, int low, int high)
Indicate the high index as well. Attempting to read or write past the high index results
in the end being clipped off.

uint readBlock(void* buffer, uint size)

uint writeBlock(void* buffer, uint size)

ulong seek (long offset, SeekPosrel)
Overrides of Stream methods.

string

To copy or not to copy?

When a function takes a string as a parameter, and returns a string, is that string the same as
the input string, modified in place, or isit amodified copy of the input string? The D array
convention is "copy-on-write". This means that if no modifications are done, the original
string (or slices of it) can be returned. If any modifications are done, the returned string isa
copy.
class StringException
Thrown on errors in string functions.
const char[] hexdigits;
"0123456789ABCDEF"
const char[] digits;
"0123456789"
const char[] octdigits,
"01234567"
const char[] lower case;
"abcdefghijklmnopgrstuvwxyz"
const char[] upper case;
"ABCDEFGHIJKLMNOPQRSTUVWXY Z"
const char[] letters;
"ABCDEFGHIJKLMNOPQRSTUVWXY Zabcdefghijklmnopgrstuvwxyz"
const char[] whitespace;
"AWANN\F"
long atoi(char[] s)
Convert string to integer.
real atof(char[] s)
Convert string to real.

169

The D Programming Language

int cmp(char[] sl, char[] s2)
Compare two strings. Returns:
<Ofor (sl < s2)
=0for (sl == 2)
>0 for (sl > s2)
int icmp(char[] s1, char[] s2)
Same as cmp() but case insensitive.
char* toChar z(char[] string)
ConvertsaD array of charsto a C-style O terminated string.
int find(char[] s, char c)
Find first occurrance of ¢ in string s. Return index in swhereit isfound. Return -1 if
not found.
int rfind(char[] s, char)
Find last occurrance of cin string s. Return index in swhere it isfound. Return -1 if
not found.
int find(char[] s, char[] sub)
Find first occurrance of sub[] instring §]. Returnindex in §[] where it isfound.
Return -1 if not found.
int rfind(char[] s, char[] sub)
Find last occurrance of sub in string s. Return index in swhereit isfound. Return -1 if
not found.
char[] tolower (char[] s)
Convert string to lower case.
char[] toupper (char[] 9)
Convert string to upper case.
char[] capitalize(char[] s)
Capitalize first character of string.
char[] capwords(char[] s)
Capitalize al wordsin string. Remove leading and trailing whitespace. Replace all
seguences of whitespace with a single space.
char[] join(char[][] words, char[] sep)
Concatenate all the strings together into one string; use sep[] as the separator.
char[][] split(char|[] s)
Split §[] into an array of words, using whitespace as the delimiter.
char[][] split(char[] s, char[] delim)
Split §[] into an array of words, using delim[] as the delimiter.
char[][] splitlines(char[] s)
Split §[] into an array of lines, using CR, LF, or CR-LF asthe delimiter.
char[] stripl(char[] s)
char[] stripr(char[] s)
char[] strip(char[] s)
Strips leading or trailing whitespace, or both.
char[] ljustify(char[] s, int width)
char[] rjustify(char[] s, int width)
char[] center(char[] s, int width)
Left justify, right justify, or center string in field width chars wide.
char[] Zfill(char[] s, int width)
Same asrjustify(), but fill with '0's.
char[] replace(char|] s, char[] from, char[] to)
Replace occurrences of from[] with to[] in 9] .
char[] replaceSlice(char[] string, char[] dlice, char[] replacement)

170

The D Programming Language

Given astring[] with adlice[] into it, replace slice[] with replacement[] .
char[] insert(char[] s, int index, char[] sub)
Insert sub[] into] at location index.
int count(char[] s, char[] sub)
Count up all instances of sub[] ing].
char[] expandtabs(char[] s, int tabsize)
Replace tabs with the appropriate number of spaces. tabsize is the distance between
tab stops.
char[] maketrans(char[] from, char[] to)
Construct trandlation table for translate().
char[] trandate(char[] s, char[] transtab, char[] delchars)
Trandate charactersin g] using table created by maketrans(). Delete charsin
delcharg].
char[] toString(uint u)
Convert uint to string.
char[] toString(char* s)
Convert C-style O terminated string to D string.

system

thread

The thread module defines the class Thread. Thread is the basis for writing multithreaded
applications. Each thread has a unique instance of class Thread associated withiit. It is
important to use the Thread class to create and manage threads as the garbage collector needs
to know about all the threads.
typedef ... thread_hdl
The type of the thread handle used by the operating system.
class Thread
One for each thread.
class ThreadError
Thrown for errors.
The members of Thread are:
this()
Constructor used by classes derived from Thread that override main().
this(int (*fp)(void *), void *arg)
Constructor used by classes derived from Thread that override run().
this(int delegate() dg)
Constructor used by classes derived from Thread that override run().
thread_hdl hdl;
The handle to this thread assigned by the operating system. Thisis set to thread_id.init
if the thread hasn't been started yet.
void start();
Create a new thread and start it running. The new thread initializes itself and then calls
run(). start() can only be called once.
int run(void *p);
Entry point for athread. If not overridden, it calls the function pointer fp and argument
arg passed in the constructor, or the delegate dg. The return value is the thread exit
code, which isnormally O.
void wait();

171

The D Programming Language

Wait for this thread to terminate. Throws ThreadError if the thread hasn't begun yet
or has already terminated or is called on itself.

void wait(unsigned milliseconds);
Wait for this thread to terminate or until milliseconds time has elapsed, whichever
occursfirst. Throws ThreadError if the thread hasn't begun yet or has already
terminated or is called on itself.

TS getState();
Returns the state of the thread. The state is one of the following:
TS Description
INITIAL The thread hasn't been started yet.

RUNNING The thread is running or paused.

TERMINATED The thread has ended.

void setPriority(PRIORITY *p);
Adjust the priority of thisthread.

PRIORITY Description
INCREASE Increase thread priority
DECREASE Decrease thread priority
IDLE Assign thread low priority

CRITICAL Assign thread high priority

static Thread getThis();

Returns areference to the Thread for the thread that called the function.
static Thread[] getAll();

Returns an array of all the threads currently running.
void pausg();

Suspend execution of this thread.
void resume();

Resume execution of this thread.
static void pauseAll();

Suspend execution of all threads but this thread.
static void resumeAll();

Resume execution of all paused threads.
static void yield();

Give up the remainder of thisthread'stime slice.

Zip

stdio

int printf(char* format, ...)
C printf() function.

172

The D Programming Language

D for Win32

This describes the D implementation for 32 bit Windows systems. Naturally, Windows
specific D features are not portable to other platforms.

Instead of the:
#i ncl ude <wi ndows. h>

of C,inD thereis:
i mport wi ndows;

Calling Conventions

In C, the Windows API calling conventionsare __stdcall. In D, itissimply:
extern (W ndows)

{
}

The Windows linkage attribute sets both the calling convention and the name mangling
scheme to be compatible with Windows.

function declarations ...

For functionsthat in C would be __declspec(dilimport) or __declspec(dllexport), use the
export attribute:

export void func(int foo);

If no function body is given, it'simported. If afunction body is given, it's exported.

Windows Executables

Windows GUI applications can be written with D. A sample such can be found in
\ drd\ sanpl es\ d\ wi nsanp. d

These are required:

Instead of amai n function serving as the entry point, aw nhai n function is needed.

. W nMai n must follow this form:
i mport wi ndows;

1

2

3

4.

5. extern (C) void gc_init();

6 extern (C) void gc_term);

7 extern (C) void mnit();

8 extern (C) void noduleCor();

9 extern (C) void _nodul eUnitTests();
11. extern (W ndows)

12. int W nMai n(H NSTANCE hl nst ance,

13. H NSTANCE hPr evl nst ance,
14. LPSTR | pCndLi ne,

15. i nt nCndShow)

16. {

17. int result;

18.

173

The D Programming Language

19. gc_init(); /1 initialize garbage collector

20. _mnit(); /1 initialize nmodul e constructor
tabl e

21.

22. try

23. {

24. _nmodul eCtor (); /1 call nodule constructors

25. _nmodul eUni t Tests(); /1 run unit tests (optional)

26.

27. result = doit(); /1 insert user code here

28. }

29.

30. catch (Object o) /1 catch any uncaught exceptions

31.

32. MessageBoxA(null, (char *)o.toString(), "Error",

33. MB_COK | MB_I CONEXCLAMATI ON) ;

34. result = 0; /1 failed

35. }

36.

37. gc_term); /1 run finalizers; term nate garbage
col I ector

38. return result;

39. }

Thedoi t () function iswhere the user code goes, the rest of WinMain is boilerplate to
initialize and shut down the D runtime system.

40. A .def (Module Definition File) with at least the following two linesinit:
41. EXETYPE NT
42. SUBSYSTEM W NDOAS

Without those, Win32 will open atext console window whenever the application is
run.

43. The presence of WinMain() is recognized by the compiler causing it to emit a
referenceto _acrtused and the phobos.lib runtime library.

DLLs (Dynamic Link Libraries)

DLLs can be created in D in roughly the sasmeway asin C. A DIIMain() isrequired, looking
like:

i mport wi ndows;

HI NSTANCE g_hl nst ;

extern (O

void gc_init();

void gc_tern();

void _mnit();

void _nodul eCtor();

voi d _nodul eUnit Tests();

}

extern (W ndows)

174

The D Programming Language

BOOL DI | Mai n(H NSTANCE hl nstance, ULONG ul Reason, LPVO D
pvReser ved)

swi tch (ul Reason)

{
case DLL_PROCESS ATTACH:.

gc_init(); /] initialize GC
_mnit(); /1 initialize nmodule |ist
_nmodul eCtor (); /1 run nodul e constructors
_nodul eUni t Tests(); /1 run nodul e unit
tests
br eak;
case DLL_PROCESS DETACH:.
gc_term); /1 shut down GC
br eak;
case DLL_THREAD ATTACH:
case DLL_THREAD DETACH:
/1 Miltiple threads not supported yet
return false;
g_hl nst =hl nst ance;
return true;
}
Notes:

« The_moduleUnitTests() cal isoptional.

- It'salittle crude, | hopeto improveit.

« The presence of DIIMain() is recognized by the compiler causing it to emit areference
to__acrtused_dll and the phobos.lib runtime library.

Link with a.def (Module Definition File) aong the lines of :

LI BRARY MYDLL

DESCRI PTI ON "My DLL witten in D

EXETYPE NT

CODE PRELOAD DI SCARDABLE

DATA PRELOAD SI NGLE

EXPORTS
D | Get A assj ect @
Dl | CanUnl oadNow @]
Dl | Regi st er Ser ver @
Dl | Unr egi st er Server @

The functions in the EXPORTS list are for illustration. Replace them with the actual exported
functionsfrom MYDLL.

Memory Allocation

D DLLs use garbage collected memory management. The question is what happens when
pointers to allocated data cross DLL boundaries? Other DLLS, or callerstoaD DLL, may
even be written in another language and may have no idea how to interface with D's garbage
collector.

There are many approaches to solving this problem. The most practical approaches are to
assume that other DLLS have no idea about D. To that end, one of these should work:

175

The D Programming Language

« Do not return pointers to D gc allocated memory to the caller of the DLL. Instead,
have the caller alocate a buffer, and have the DLL fill in that buffer.

« Retain apointer to the data within the D DLL so the GC will not freeit. Establish a
protocol where the caller informsthe D DLL when it is safe to free the data.

« Use operating system primitives like Virtua Alloc() to allocate memory to be
transferred between DLLs.

+ Use COM interfaces, rather than D class objects. D supports the AddRef()/Releas()
protocol for COM interfaces. Most languages implemented on Win32 have support for
COM, making it agood choice.

COM Programming

Many Windows API interfaces are in terms of COM (Common Object Model) objects (also
called OLE or ActiveX objects). A COM object is an object who'sfirst field is a pointer to a
vtbl[], and the first 3 entriesin that vtbl[] are for Querylnterface(), AddRef(), and Release().

COM objects are analogous to D interfaces. Any COM object can be expressed asaD
interface, and every D object with an interface X can be exposed asa COM aobject X. This
means that D is compatible with COM objects implemented in other languages.

While not strictly necessary, the Phobos library provides an Object useful as a super class for
all D COM abjects, called ComObject. ComObject provides a default implementation for
Queryinterface(), AddRef(), and Release().

Windows COM objects use the Windows calling convention, which is not the default for D,
so COM functions need to have the attribute extern (Windows). So, to write a COM object:

i mport com
cl ass MyCOWbbj ect : Conthj ect
{

extern (W ndows):

}

The sample code includes an example COM client program and server DLL.

176

The D Programming Language

D vs Other Languages

Thistable is a quick and rough comparison of various features of D with other languagesit is
frequently compared with. While many capabilities are available with libraries, thistable is
for features built in to the language itself.

Feature D | C |C++ | C# | Java
| IGarbage Collection|

Functions

'Function del egates

'Function overload ng

Out function parameters
'Nested functions

| Function literals

Dynamic closures

'Covariant return types

Arrays

Li ghtweight arrays

'Resizeable arrays

| Arrays of bits

BUilt-in stri ngs

'Array dlicing

| Array bounds checking

Associative arrays

| grong txgedefg

'Aliasas

OOP
[Obiect Oriented]
Multi ple Inheritance
Iterfece]

| Operator overloading

| Modules

| Dynamic class loading

Inner classes

177

The D Programming Language

Feature D | C |C++ | C# | Java

'Covariant return types

Performance

IIInIineassembIed

' Direct access to hardware
Lightweight objects

| Independent of VM

Direct native code gen

| Templates

Reliability
'|D$i an by Contract|
Unit testing
| Static construction order
Guaranteed initialization
RAII
'Exception handling
try-catch-finally blocks

Thread synchronization primitives

Compatibility

| Algol-style syntax
 Enumerated types

'Support al Ctypes

' ILong double floating point|

| Complex and Imaginary

'Direct accessto C

Use existi ng debuggers

Generates standard object files

| Macro preprocessor
| Other

‘Conditional compilation

178

The D Programming Language

Notes

Object Oriented
This means support for classes, member functions, inheritance, and virtual function
dispatch.

Inline assembler
Many C and C++ compilers support an inline assembler, but thisis not a standard part
of the language, and implementations vary widely in syntax and quality.

Interfaces
Support in C++ for interfaces is weak enough that an IDL (Interface Description
Language) was invented to compensate.

Garbage Collection
The Hans-Boehm garbage collector can be successfully used with C and C++, but it is
not a standard part of the language.

Design by Contract
The Digital Mars C++ compiler supports Design by Contract as an extension.

Strong typedefs
Strong typedefs can be emulated in C/C++ by wrapping atype in a struct. Getting this
to work right requires much tedious programming, and so is considered as not
supported.

Struct member alignment control
Although many C/C++ compilers contain pragmas to specify struct alignment, these
are nonstandard and incompatible from compiler to compiler.

Long double floating point
While the standard for C and C++ specify long doubles, few compilers (besides
Digital Mars C/C++) actually implement 80 bit (or longer) floating point types.

179

The D Programming Language

Programming in D for C
Programmers

Every experienced C programmer accumul ates a series of
idioms and techniques which become second nature.
Sometimes, when learning a new language, those idioms can
be so comfortableit's hard to see how to do the equivalent in
the new language. So here's a collection of common C
techniques, and how to do the corresponding task in D.

Since C does not have object-oriented features, there's a separate section for object-oriented
issues|Programming in D for C++ Programmers|

The C preprocessor is covered in F‘heﬁ'PqurocessorVS'B}

. SCaped 0 SN
o -‘V 'V._‘ Al A Cl

. =TTy ot Dol aliter cirerarr
. Creatmuarew typedefdtyoe
. OO e SHTeS

. ComMparmoStrimos

180

The D Programming Language

« Strmgtrterats

Getting the Size of a Type
The C Way

si zeof (i nt)

si zeof (char *)

si zeof (doubl e)

si zeof (struct Foo)

The D Way

Use the size property:
int.size
(char *).size

doubl e. si ze
Foo. si ze

Get the max and min values of a type

The C Way

#include <limts. h>

#i ncl ude <mat h. h>

CHAR_MAX
CHAR_ M N
ULONG_MAX
DBL_M N

The D Way

char . max
char. mn
ul ong. max
doubl e. m n

Primitive Types

C to D types

bool

char

si gned char
unsi gned char
short

unsi gned short
wchar t

i nt

unsi gned

| ong

bi t
char
byt e
ubyte
short
ushort
wehar
i nt

ui nt

i nt

181

The D Programming Language

unsi gned | ong => ui nt

l ong | ong => | ong

unsi gned long |long => ul ong

f1 oat => f1 oat
doubl e => doubl e

| ong doubl e => ext ended
_Imagi nary | ong double => i magi nary

_Compl ex 1 ong doubl e => conpl ex

Although char is an unsigned 8 bit type, and wchar is an unsigned 16 bit type, they have their
own separate types in order to aid overloading and type safety.

Ints and unsignedsin C are of varying size; not soin D.

Special Floating Point Values

The C Way
#i ncl ude <fp. h>

NAN
I NFINITY

#i ncl ude <fl oat. h>

DBL_DI G
DBL_EPSI LON
DBL_MANT DI G
DBL_MAX_10_EXP
DBL_MAX_EXP
DBL_M N_10_EXP
DBL_M N_EXP

The D Way

doubl e. nan
double.infinity
doubl e. di g
doubl e. epsi |l on
doubl e. nant _di g
doubl e. nax_10_exp
doubl e. max_exp
doubl e. mi n_10_exp
doubl e. m n_exp

Taking the Modulus of a floating point number

TheC Way

#i ncl ude <mat h. h>
float f = fnodf(x,vy);

double d = frod(x,y);
| ong double e = fnodl (x,y);

182

The D Programming Language

The D Way

D supports the modulus ('%'") operator on floating point operands:
float f = x %yvy;

double d = x %Yy;
extended e = x %vy;

Dealing with NAN's in floating point compares
TheC Way

C doesn't define what happensif an operand to a compare is NAN, and few C compilers
check for it (the Digital Mars C compiler is an exception, DM's compilers do check for NAN
operands).

#i ncl ude <mat h. h>

if (isnan(x) || isnan(y))
result = FALSE

el se
result = (x <y);

The D Way

D offers afull complement of comparisons and operators that work with NAN arguments.

result = (x <y); /1 false if x or y is nan

Assert's are a necessary part of any good defensive coding strategy.
The C Way

C doesn't directly support assert, but doessupport _ FILE __and __ LINE__ from which an
assert macro can be built. In fact, there appears to be practically no other usefor _ FILE
and _LINE_ .

#i ncl ude <assert. h>

assert(e == 0);

The D Way

D simply builds assert into the language:
assert (e == 0);

[NOTE: trace functions?]

183

The D Programming Language

Initializing all elements of an array

The C Way

#def i ne ARRAY_LENGTH 17

i nt array[ARRAY_LENGTH] ;

for (i = 0; i < ARRAY_LENGTH; i ++)
array[i] = val ue;

The D Way

int array[17];
array[] = val ue;

Looping through an array
The C Way

The array length is defined separately, or a clumsy sizeof() expression is used to get the
length.

#defi ne ARRAY_LENGTH 17

i nt array[ARRAY_LENGTH] ;

for (i = 0; i < ARRAY_LENGTH;, i ++)
func(array[i]);

or:
int array[17];
for (i = 0; i < sizeof(array) / sizeof(array[0]); i++)
func(array[i]);
The D Way

The length of an array is accessible the property "length".

int array[17];
for (i = 0; i < array.length; i++)
func(array[i]);

Creating an array of variable size

The C Way

C cannot do thiswith arrays. It is necessary to create a separate variable for the length, and

then explicitly manage the size of the array:
#i nclude <stdlib. h>

int array_| ength;
int *array;
i nt *newarray;

newarray = (int *) realloc(array, (array_length + 1) *
sizeof (int));
if (!newarray)
error("out of nmenory");
array = newarray;
array[array_l engt h++] = x;

184

The D Programming Language

The D Way

D supports dynamic arrays, which can be easilly resized. D supports all the requisite memory
management.
int array[];

array[array. | ength++] = x;

String Concatenation
The C Way

There are several difficulties to be resolved, like when can storage be free'd, dealing with null
pointers, finding the length of the strings, and memory allocation:

#i ncl ude <string. h>

char *sl1;
char *s2
char *s;

/1 Concatenate sl and s2, and put result in s

free(s);

s = (char *)malloc((sl ? strlen(sl) : 0) +
(s2 ? strlen(s2) : 0) + 1);

if (!s)
error("out of menory");
if (s1)
strcpy(s, sl);
el se
*s = 0;
if (s2)

strcpy(s + strlen(s), s2);

/1 Append "hello" to s

char hello[] = "hello";

char *news;

size_t lens = s ? strlen(s) : O;

news = (char *)realloc(s, (lens + sizeof(hello) + 1) *
si zeof (char));

if (!news)

error("out of menory");
S = news;
mencpy(s + lens, hello, sizeof(hello));

The D Way

D overloads the operators ~ and ~= for char and wchar arrays to mean concatenate and
append, respectively:

char si[];

char s2?[];

char s[];

= sl ~ s2;

S
s ~= "hello";

185

The D Programming Language

Formatted printing

The C Way

printf() isthe general purpose formatted print routine:
#i ncl ude <stdio. h>

printf("Calling all cars % times!\n", ntines);

The D Way

What can we say? printf() rules:
i mport stdio;

printf("Calling all cars % times!\n", ntines);

Forward referencing functions

The C Way

Functions cannot be forward referenced. Hence, to call afunction not yet encountered in the

sourcefile, it is necessary to insert afunction declaration lexically preceding the call.
voi d forwardfunc();

voi d nyfunc()
{

forwar df unc() ;

}

voi d forwardfunc()

{
}

The D Way

The program islooked at as awhole, and so not only is it not necessary to code forward
declarations, it is not even allowed! D avoids the tedium and errors associated with writing

forward referenced function declarations twice. Functions can be defined in any order.
voi d nyfunc()
{

forwar df unc() ;

}

voi d forwardfunc()

{
}

Functions that have no arguments

TheC Way

void function(void);

The D Way

D isastrongly typed language, so there is no need to explicitly say afunction takes no
arguments, just don't declare it has having arguments.

186

The D Programming Language

voi d function()

{
}

Labelled break's and continue's.

TheC Way

Break's and continue's only apply to the innermost nested loop or switch, so a multilevel break

must use a goto:
for (i =0; i < 10; i++)

for (j =0; j < 10; j++)
{
if (j == 23)
goto Louter;
if (j == 4)
goto L2;

}
L2:

}

Lout er:

The D Way

Break and continue statements can be followed by alabel. The label isthe label for an
enclosing loop or switch, and the break applies to that |oop.
Louter:
for (i =0; i < 10; i++)
{
for (j = 0; j < 10; j++)
if (j ==3)
break Louter;
if (j == 4)
continue Louter;

}

/1l break Louter goes here

Goto Statements

The C Way

The much maligned goto statement is a staple for professional C coders. It's necessary to
make up for sometimes inadequate control flow statements.

The D Way

Many C-way goto statements can be eliminated with the D feature of labelled break and
continue statements. But D is a practical language for practical programmers who know when
the rules need to be broken. So of course D supports the goto!

187

The D Programming Language

Struct tag name space

The C Way

It's annoying to have to put the struct keyword every time atype is specified, so acommon
idiomisto use:
typedef struct ABC{ ... } ABC

The D Way

Struct tag names are not in a separate name space, they are in the same name space as

ordinary names. Hence:
struct ABC{ ... };

Looking up strings

The C Way

Given astring, compare the string against alist of possible values and take action based on
which oneitis. A typical use for this might be command line argument processing.

#i ncl ude <string. h>

voi d dostring(char *s)

{
enum Strings { Hello, Goodbye, Maybe, Max };
static char *table[] = { "hello", "goodbye", "nmaybe" };
int i;

for (i =0; i < Max; i++)
{
if (strcnp(s, table[i]) == 0)
br eak;

switch (i)
{

case Hell o:
case CGoodbye:
case Maybe:
defaul t:

}
}

The problem with thisistrying to maintain 3 parallel data structures, the enum, the table, and
the switch cases. If there are alot of values, the connection between the 3 may not be so
obvious when doing maintenance, and so the situation isripe for bugs. Additionally, if the
number of values becomes large, abinary or hash lookup will yield a considerable
performance increase over asimple linear search. But coding these can be time consuming,
and they need to be debugged. It'stypical that such just never gets done.

The D Way

D extends the concept of switch statements to be able to handle strings as well as numbers.

Then, the way to code the string lookup becomes straightforward:
voi d dostring(char s[])
{
switch (s)
{
case "hell o":
case "goodbye":
case "maybe":
defaul t:

188

The D Programming Language

}
}
Adding new cases becomes easy. The compiler can be relied on to generate a fast lookup

scheme for it, eliminating the bugs and time required in hand-coding one.

Setting struct member alignment

The C Way

It's done through a command line switch which affects the entire program, and woe results if

any modules or libraries didn't get recompiled. To address this, #pragma's are used:
#pragma pack(1)
struct ABC
{

1
#pragma pack()
But #pragmas are nonportable both in theory and in practice from compiler to compiler.

The D Way

Clearly, since much of the point to setting alignment is for portability of data, a portable
means of expressing it is necessary.

struct ABC
{
int z; /1l z is aligned to the default
align 1 int x; /1 x is byte aligned
align 4
{
. /1 declarations in {} are dword
al i gned
}
align 2: /1 switch to word al i gnment

from here on

int vy; /1 y is word aligned

Anonymous Structs and Unions
Sometimes, it's nice to control the layout of a struct with nested structs and unions.

TheC Way

C doesn't allow anonymous structs or unions, which means that dummy tag names and

dummy members are necessary:
struct Foo

{ int i;
uni on Bar
{
struct Abc { int x; long y; } _abc;
char *p;
} _bar;
b

#define x _bar. abc. x
#define y _bar. _abc.y
#define p _bar.p

189

The D Programming Language

struct Foo f;

Not only isit clumsy, but using macros means a symbolic debugger won't understand what is
being done, and the macros have global scope instead of struct scope.

The D Way

Anonymous structs and unions are used to control the layout in a more natural manner:
struct Foo
{ int i;
uni on
{
struct { int x; longy; }
char *p;

Foo f;

—h —h —h —h
o< X —

Declaring struct types and variables.

The C Way

Isto do it in one statement ending with a semicolon:
struct Foo { int x; int y; } foo;

Or to separate the two:
struct Foo { int x; int y; }; /1 note termnating
struct Foo foo;

The D Way
Struct definitions and declarations can't be done in the same statement:

struct Foo { int x; int vy; } /1 note there is no
term nating

Foo foo;

which means that the terminating ; can be dispensed with, eliminating the confusing
difference between struct {} and function & block {} in how semicolons are used.

Getting the offset of a struct member.

TheC Way

Naturally, another macro is used:
#i ncl ude <st ddef >
struct Foo { int x; int vy; };

of f = offsetof (Foo, y);

190

The D Programming Language

The D Way

An offset isjust another property:
struct Foo { int x; int vy; }

of f = Foo.y. of fset;

Union initializations.

The C Way

Unions are initialized using the "first member"” rule:

union U { int a; long b; };

union Ux ={ 5 }; /[l initialize menber '"a' to 5
Adding union members or rearranging them can have disastrous consequences for any
initializers.

The D Way

In D, which member is being initialized is mentioned explicitly:
union U{ int a; long b; }
Ux ={ a:5}

avoiding the confusion and maintenance problems.

Struct initializations.

TheC Way

Members are initialized by their position within the{}'s:

struct S{ int a; int b; };

struct Sx ={ 5, 31};
Thisisn't much of a problem with small structs, but when there are numerous members, it
becomes tedious to get the initializers carefully lined up with the field declarations. Then, if
members are added or rearranged, all the initializations have to be found and modified
appropriately. Thisisaminefield for bugs.

The D Way

Member initialization is done explicitly:
struct S{ int a; int b; }
Sx ={ b3, a5}
The meaning is clear, and there no longer is a positional dependence.

Array initializations.

TheC Way

Cinitializes array by positional dependence:
int a[3] ={ 3,2,2 };
Nested arrays may or may not havethe{ }:
int b[3][2] ={ 2,3, {6,5}, 3,4 };

The D Way

D doesit by positional dependence too, but an index can be used as well: The following all
produce the same resullt:

191

The D Programming Language

int a[3] = 3, 2, 0]

int a[3] =1 3, 21]; /1 unsupplied initializers are O
just like in C

int a[3] = 2:0, 0:3, 1:2]

int a[3] = 2:0, 0:3, 2]; /1 if not supplied, the index is the
previ ous

/1 one plus one.
This can be handy if the array will be indexed by an enum, and the order of enums may be
changed or added to:

enum col or { black, red, green }

int ¢c[3] =] black:3, green:2, red:5];
Nested array initializations must be explicit:

int b[3][2] = [2,3], [6,5], [3,4] 1;

int b[3][2] =1[[2,6,3],[3,5,4]]; /1 error

Escaped String Literals

TheC Way

C has problems with the DOS file system because a\ is an escape in a string. To specifiy file

c:\root\file.c:
char file[] = "c:\\root\\file.c";

This gets even more unpleasant with regular expressions. Consider the escape sequence to
match a quoted string:

I IMNTE (VL [ANN]*) *
In C, this horror is expressed as.

char quoteString[] = "\"[AV\A]T*(V\\L AN]*)*\ s

TheD Way
Within strings, it isWY SIWY G (what you see is what you get). Escapes are in separate
strings. So:

char file[] = "'c:\root\file.c';

char quoteString[] = \" "[M\A]*(\N\VL[MN]*)* A",
The famous hello world string becomes:
char hello[] = "hello world" \n;

Ascii vs Wide Characters

Modern programming requires that wchar strings be supported in an easy way, for
internationalization of the programs.

The C Way

C uses the wchar_t and the L prefix on strings:

#i ncl ude <wchar. h>

char foo_ascii[] = "hello";

wchar _t foo_wchar[] = L"hell 0";
Things get worse if code is written to be both ascii and wchar compatible. A macro isused to
switch strings from ascii to wchar:

#i ncl ude <tchar. h>

tchar string[] = TEXT("hello");

192

The D Programming Language

The D Way

The type of astring is determined by semantic analysis, so there is no need to wrap stringsin
amacro cal:

char foo_ascii[] = "hello"; /1 string is taken to be asci
wchar foo_wchar[] = "hello"; /1 string is taken to be wchar

Arrays that parallel an enum

TheC Way
Consider:
enum COLORS { red, blue, green, max };
char *cstring[max] = {"red", "blue", "green" };

Thisisfairly easy to get right because the number of entriesis small. But suppose it getsto be
fairly large. Then it can get difficult to maintain correctly when new entries are added.

The D Way
enum COLORS { red, blue, green }

char cstring[COLORS. max + 1][] =

COLORS. red : "red",
COLORS. bl ue : "blue",
COLORS. green : "green",
1
Not perfect, but better.

Creating a new typedef'd type

The C Way

Typedef'sin C are weak, that is, they really do not introduce a new type. The compiler doesn't
distinguish between a typedef and its underlying type.

t ypedef void *Handl e;

void foo(void *);

voi d bar (Handl e) ;

Handl e h;
foo(h); /1 coding bug not caught
bar (h); /1 ok

The C solution is to create adummy struct whose sole purpose is to get type checking and
overloading on the new type.

struct Handle_ _ { void *val ue; }

typedef struct Handl e _ *Handl e;

void foo(void *);

voi d bar (Handl e) ;

Handl e h;
foo(h); /'l syntax error
bar (h); /1 ok

Having a default value for the type involves defining a macro, a naming convention, and then

pedantically following that convention:
#define HANDLE INIT ((Handl e)-1)

193

The D Programming Language

Handl e h = HANDLE_I NI T;
h = func();
if (h != HANDLE_INIT)

For the struct solution, things get even more complex:
struct Handle_ HANDLE INIT;

void init_handl e() /1 call this function upon startup

HANDLE INIT.value = (void *)-1

}
Handl e h = HANDLE_INIT;
h = func();

if (memcnp(&h, &HANDLE | NI T, si zeof (Handl e)) != 0)

There are 4 names to remember: Handl e, HANDLE I NI T, struct Handle__, val ue.

The D Way

No need for idiomatic constructions like the above. Just write:
t ypedef void *Handl e;
void foo(void *);
voi d bar (Handl e) ;

Handl e h;
foo(h); /1 syntax error
bar (h); /1 ok

To handle adefault value, add an initializer to the typedef, and refer to it with the . i ni t

property:
t ypedef voi d* Handle = cast(void*)(-1);
Handl e h;
h = func();
if (h!=Handle.init)

There's only one name to remember: Handl e.

Comparing structs

TheC Way

While C defines struct assignment in a simple, convenient manner:
struct A X, v,

X =i

it does not for struct comparisons. Hence, to compare two struct instances for equality:
#i ncl ude <string. h>

struct A x, v;

i%'(nEnnnp(&x, &y, sizeof(struct A)) == 0)

194

The D Programming Language

Note the obtuseness of this, coupled with the lack of any kind of help from the language with
type checking.

There's anasty bug lurking in the memcmp(). The layout of a struct, due to alignment, can
have 'holes in it. C does not guarantee those holes are assigned any values, and so two
different struct instances can have the same value for each member, but compare different
because the holes contain different garbage.

The D Way

D doesit the obvious, straightforward way:
A X, vy,

i'1'°'(x ==vy)

Comparing strings

The C Way

The library function strcmp() is used:
char string[] = "hello";

if (strcnp(string, "betty") == 0) /1 do strings match?

C uses 0 terminated strings, so the C way has an inherent inefficiency in constantly scanning
for the terminating O.

TheD Way
Why not use the == operator?
char[] string = "hello";

if (string == "betty")

D strings have the length stored separately from the string. Thus, the implementation of string
compares can be much faster than in C (the difference being equivalent to the difference in
speed between the C memcmp() and strcmp()).

D supports comparison operators on strings, too:

char[] string = "hello";

if (string < "betty")

which is useful for sorting/searching.

195

The D Programming Language

Sorting arrays

The C Way

Although many C programmers tend to reimplmement bubble sorts over and over, the right

way to sort in Cisto use gsort():
i nt conpare(const void *pl, const void *p2)

{
type *t1 = (type *)pil;
type *t1l = (type *)p2;
return *t1 - *t2

}

type array[10];

débrt(array, si zeof (array)/sizeof (array[0]), sizeof(array[0]),
conpare);

A compare() must be written for each type, and much careful typo-prone code needs to be
written to make it work.

The D Way

Sorting couldn't be easier:
type[] array;

array. sort; /1 sort array in-place

Volatile memory access

The C Way

To access volatile memory, such as shared memory or memory mapped /O, a pointer to

volatileis created:
volatile int *p = address;

i = *p;

The D Way

D hasvolatile as a statement type, not as a type modifier:
int* p = address;

volatile { i = *p; }

String literals

The C Way

String literalsin C cannot span multiple lines, so to have ablock of text it is necessary to use\
line splicing:

"This text spans\n\

mul ti pl e\ n\

[ines\n"

196

The D Programming Language

If thereisalot of text, this can wind up being tedious.

The D Way

String literals can span multiple lines, asin:
"This text spans
nul tiple
lines

So blocks of text can just be cut and pasted into the D source.

Data Structure Traversal

The C Way

Consider afunction to traverse arecursive data structure. In this example, there'sasimple
symbol table of strings. The data structure is an array of binary trees. The code needsto do an
exhaustive search of it to find a particular string in it, and determineif it is a unique instance.

To make thiswork, a helper function menber sear chx is needed to recursively walk the trees.
The helper function needs to read and write some context outside of the trees, so a custom

struct Paranbl ock iscreated and a pointer to it is used to maximize efficiency.

struct Synbol

{ char *id;
struct Synbol *left;
struct Synbol *right;

1
struct Paranbl ock
{ char *id;
struct Synbol *sm
1
static void menbersearchx(struct Paranbl ock *p, struct Synbol *s)
while (s)
{
if (strenp(p->id,s->id) == 0)
{
if (p->sn
error ("anbi guous nenber %s\n", p->id);
p->sm = s;
}
if (s->left)

menber sear chx(p, s->l eft);
s = s->right;

}
}
struct Synbol *synbol nenbersearch(Synbol *table[], int tabl emax,
*id)
{

struct Paranbl ock pb;
int i;

197

char

The D Programming Language

pb.id =id,
pb. sm = NULL;
for (i =0; i < tablemax; i++)
{
nmenber sear chx(pb, table[i]);
}
return pb.sm
}
The D Way

Thisisthe same algorithm in D, and it shrinks dramatically. Since nested functions have
access to the lexically enclosing function's variables, there's no need for a Paramblock or to
deal with its bookkeeping details. The nested helper function is contained wholly within the
function that needs it, improving locality and maintainability.

The performance of the two versionsisindistinguishable.

cl ass Synbol

{ char[] id;
Synbol |eft;
Synbol right;

}

Synbol synbol nenbersearch(Synbol [] table, char[] id)
{ Synbol sm

voi d nenber sear chx(Synbol s)

{
while (s)
if (id == s.id)
{
if (sm
error ("anbi guous nenber %\n", id);
sm = s;
}
if (s.left)
menber searchx(s.left);
s = s.right;
}
}
for (int i =0; i <table.length; i++)
{
menber searchx(table[i]);
}

return sm

198

The D Programming Language

Programming in D for C++ Programmers

Every experienced C++ programmer
accumulates a series of idioms and techniques
which become second nature. Sometimes,

° when learning a new language, those idioms
can be so comfortableit's hard to see how to
0 do the equivalent in the new language. So

here's a collection of common C++
techniques, and how to do the corresponding
task in D.

Defining constructors

The C++ Way

Constructors have the same name as the class:
cl ass Foo

{
}s

Foo(int Xx);

The D Way

Constructors are defined with the this keyword:
cl ass Foo

{
}

this(int x) { }

which reflects how they are used in D.

199

The D Programming Language

Base class initialization

The C++ Way

Base constructors are called using the base initializer syntax.
class A { A() {... } };
class B: A

{
B(int x)
A()) /1 call base constructor
{ ...

}

The D Way

The base class constructor is called with the super syntax:
class A{ this() { ... } }
class B: A

{
this(int x)

{ ...
super () ; /1 call base constructor
}

It's superior to C++ in that the base constructor call can be flexibly placed anywhere in the
derived constructor. D can also have one constructor call another one:

class A
{ int a;
int b;
this() { a=7; b =foo(); }
this(int x)
{
this();
a = x;
}
}

Members can aso be initialized to constants before the constructor is ever called, so the above
exampleis equivalently written as:

class A
{ int a=7,;
int b;
this() { b =foo(); }
this(int x)
{
this();
a = x;
}
}

Comparing structs

The C++ Way
While C++ defines struct assignment in a simple, convenient manner:

200

The D Programming Language

struct A X, Vv,
X =Y,

it does not for struct comparisons. Hence, to compare two struct instances for equality:
#i ncl ude <string. h>

struct A X, Vv,
i nli ne bool operator==(const A& x, const A& y)

return (mencnp(&x, &y, sizeof(struct A)) == 0);
}

i%'(x ==vy)

Note that the operator overload must be done for every struct needing to be compared, and the
implementation of that overloaded operator is free of any language help with type checking.
The C++ way has an additional problem in that just inspecting the (x ==y) does not givea
clue what is actually happening, you have to go and find the particular overloaded
operator==() that appliesto verify what it really does.

There's a nasty bug lurking in the memcmp() implementation of operator==(). The layout of a
struct, due to alignment, can have 'holes in it. C++ does not guarantee those holes are
assigned any values, and so two different struct instances can have the same value for each
member, but compare different because the holes contain different garbage.

To address this, the operator==() can be implemented to do a memberwise compare.
Unfortunately, thisis unreliable because (1) if amember is added to the struct definition one
may forget to add it to operator==(), and (2) floating point nan values compare unequal even
if their bit patterns match.

Therejust is no robust solution in C++.

The D Way

D doesit the obvious, straightforward way:
A X, vy,

i%.(x ==vy)

Creating a new typedef'd type

The C++ Way

Typedef'sin C++ are weak, that is, they really do not introduce a new type. The compiler
doesn't distinguish between a typedef and its underlying type.

#defi ne HANDLE INI'T ((Handl e) (-1))

t ypedef void *Handl e;

void foo(void *);

voi d bar (Handl e) ;

Handl e h = HANDLE INIT;
foo(h); /1 coding bug not caught

201

The D Programming Language

bar (h); /1 ok

The C++ solution isto create a dummy struct whose sole purpose is to get type checking and

overloading on the new type.
#defi ne HANDLE INI'T ((void *)(-1))
struct Handl e
{ void *ptr;
Handl e() { ptr = HANDLE INIT; } /1 default initializer
Handl e(int i) { ptr = (void *)i; }
operator void*() { return ptr; } // conversion to underlying
type
1
voi d bar (Handl e) ;

Handl e h;

bar (h);

h = func();

if (h!= HANDLE_INIT)

The D Way

No need for idiomatic constructions like the above. Just write;
typedef void *Handle = cast(void *)-1
voi d bar (Handl e) ;

Handl e h;

bar (h);

h = func();

if (h!= Handle.init)

Note how a default initializer can be supplied for the typedef as a value of the underlying
type.

Friends

The C++ Way

Sometimes two classes are tightly related but not by inheritance, but need to access each
other's private members. Thisisdoneusing f ri end declarations:

class A
{ .
private:
int a;
publi c:

int foo(B *j);
friend class B;
friend int abc(A *);

b
class B
{
private:
int b;
public:

int bar(A *j);

202

The D Programming Language

friend class A

b

int A:foo(B *j
int B::bar(A *j

{ return j->b; }
{ return j->a; }

~— —

int abc(A *p) { return p->a; }

The D Way

In D, friend accessisimplicit in being a member of the same module. It makes sense that
tightly related classes should be in the same module, so implicitly granting friend access to

other module members solves the problem neatly:
nodul e X;

class A

{

private:
static int a;

public:
int foo(Bj) { returnj.b; }
}
class B
{ |
private:
static int b;
public:
int bar(Aj) { returnj.a; }
}

int abc(Ap) { return p.a; }

Thepri vat e attribute prevents other modules from accessing the members.

Operator overloading

The C++ Way

Given astruct that creates a new arithmetic data type, it's convenient to overload the
comparison operators so it can be compared against integers:

struct A
{
virtual int operator < (int i);
virtual int operator <= (int i);
virtual int operator > (int i);
virtual int operator >= (int i);
static int operator < (int i, A*a) { returna > i; }
static int operator <= (int i, A*a) { return a >=1i; }
static int operator > (int i, A*a) { returna< i; }
static int operator >= (int i, A*a) { return a<=i; }
1

A total of 8 functions are necessary, and all the latter 4 do is just rewrite the expression so the
virtual functions can be used. Note the asymmetry between the virtual functions, which have

203

The D Programming Language

(a < i) astheleft operand, and the non-virtual static function necessary to handle (i < a)
operations.

The D Way

D recognizes that the comparison operators are all fundamentally related to each other. So

only one function is necessary:
struct A

{
}

int cnp(int i);

The compiler automatically interprets all the <, <=, > and >= operators in terms of the cnp
function, aswell as handling the cases where the left operand is not an object reference.

Similar sensible rules hold for other operator overloads, making using operator overloading in
D much less tedious and less error prone. Far less code needs to be written to accomplish the
same effect.

Namespace using declarations

The C++ Way

A using-declaration in C++ is used to bring a name from a namespace scope into the current
Scope:
namespace Foo

{
}

usi ng Foo: : x;

int x;

The D Way

D uses modules instead of namespaces and #include files, and alias declarations take the place

of using declarations:
---- Module Foo.d ------
nodul e Foo;
int x;

- Anot her npodule ----
i mport Foo;
alias Foo.x Xx;

Aliasis amuch more flexible than the single purpose using declaration. Alias can be used to
rename symbols, refer to template members, refer to nested class types, etc.

RAIl (Resource Acquisition Is Initialization)

The C++ Way

In C++, resources like memory, etc., all need to be handled explicitly. Since destructors
automatically get called when leaving a scope, RAII isimplemented by putting the resource

rel ease code into the destructor:
class File

204

The D Programming Language

{ Handl e *h;

~Fi l e()
{

}

h->r el ease();

The D Way

The bulk of resource release problems are ssmply keeping track of and freeing memory. This
is handled automatically in D by the garbage collector. The second common resources used
are semaphores and locks, handled automatically with D'ssynchr oni zed declarations and
statements.

The few RAII issues left are handled by auto classes. Auto classes get their destructorsrun
when they go out of scope.

auto class File
{ Handl e h;

~thi s()

h.rel ease();

}
}
void test ()
{
if (...)
{ auto File f = new File();
} /flf.~this() gets run at closing brace, even if
/1 scope was exited via a thrown exception
}

Dynamic Closures

The C++ Way

Consider areusable container class. In order to be reusable, it must support away to apply
arbitrary code to each element of the container. Thisis done by creating an apply function that
accepts afunction pointer to which is passed each element of the container contents.

A generic context pointer is also needed, represented here by voi d *p. The example hereis of
atrivial container class that holds an array of int's, and a user of that container that computes
the maximum of those int's.

struct Col l ection

{
int array[10];
void apply(void *p, void (*fp)(void *, int))
{

for (int i =0; i < sizeof(array)/sizeof(array[0]); i++)
fp(p, array[i]);

205

The D Programming Language

}
1
void comp_max(void *p, int i)
{
int *pmax = (int *)p;
if (i > *pmax)
*pmex = i;
}
void func(Collection *c)
{
int mx = INT_MN,
c->appl y(&rax, conp_nax);
}

The C++ way makes heavy use of pointers and casting. The casting is tedious, error prone,
and loses all type safety.

The D Way

The D version makes use of delegates to transmit context information for the apply function,

and nested functions both to capture context information and to improve locality.
class Collection

int[10] array;

voi d apply(void del egate(int) fp)
{

for (int i =0; i < array.length; i++)
fp(array[i]);
}
}
void func(Collection c)
{
int max = int.mn;
void conmp_max(int i)
if (i > max)
max = i;
}
c. appl y(conp_max) ;
}

Pointers are eliminated, as well as casting and generic pointers. The D version isfully type

safe. An adternate method in D makes use of function literals:
void func(Collection c)

{
int max = int.mn;

c.apply(delegate(int i) { if (i > nmx) mx =i; });

eliminating the need to create irrelevant function names.

206

The D Programming Language

The C Preprocessor VersusD

Back when C was invented, compiler technology was primitive. Installing a text macro
preprocessor onto the front end was a straightforward and easy way to add many powerful
features. Theincreasing size & complexity of programs have illustrated that these features
come with many inherent problems. D doesn't have a preprocessor; but D provides a more
scal able means to solve the same problems.

d Pragitia Uliv

« fpragmapack

Header Files

The C Preprocessor Way

C and C++ rely heavilly on textual inclusion of header files. This frequently resultsin the
compiler having to recompile tens of thousands of lines of code over and over again for every
source file, an obvious source of slow compile times. What header files are normally used for
ismore appropriately done doing a symbolic, rather than textual, insertion. Thisis done with
the import statement. Symbolic inclusion means the compiler just loads an already compiled
symbol table. The needs for macro "wrappers' to prevent multiple #nclusion, funky #pragma
once syntax, and incomprehensible fragile syntax for precompiled headers are simply

unnecessary and irrelevant to D.
#i ncl ude <stdi o. h>

The D Way

D uses symbolic imports:
i mport stdio;

#pragma once

The C Preprocessor Way

C header files frequently need to be protected against being #include'd multiple times. To do

it, aheader file will contain the line:
#pragma once

or the more portable:
#i fndef __ STDI O | NCLUDE
#define __ STDI O | NCLUDE
... header file contents
#endi f

207

The D Programming Language

The D Way

Completely unnecessary since D does a symbolic include of import files; they only get
imported once no matter how many times the import declaration appears.

#pragma pack

The C Preprocessor Way
Thisisused in C to adjust the alignment for structs.

The D Way

For D classes, there is no need to adjust the alignment (in fact, the compiler is freeto
rearrange the data fields to get the optimum layout, much as the compiler will rearrange local
variables on the stack frame). For D structs that get mapped onto externally defined data

structures, thereisaneed, and it is handled with:
struct Foo

{
align (4): /1 use 4 byte alignnent

Macros
Preprocessor macros add powerful features and flexibility to C. But they have a downside:

« Macros have no concept of scope; they are valid from the point of definition to the end
of the source. They cut a swath across .h files, nested code, etc. When #includeing
tens of thousands of lines of macro definitions, it becomes problematicalto avoid
inadvertent macro expansions.

« Macros are unknown to the debugger. Trying to debug a program with symbolic data
is undermined by the debugger only knowing about macro expansions, not themacros
themselves.

« Macros make it impossible to tokenize source code, as an earlier macro change can
arbitrarilly redo tokens.

« Thepurely textual basis of macros leads to arbitrary and inconsistent usage, making
code using macros error prone. (Some attempt to resolve this was introduced with
templatesin C++.)

« Macrosarestill used to make up for deficits in the language's expressive capabiltiy,
such asfor "wrappers"' around header files.

Here's an enumeration of the common uses for macros, and the corresponding featurein D:

1. Defining literal constants:

The C Preprocessor Way
#define VALUE 5

The D Way
const int VALUE = 5;

208

The D Programming Language

2. Creating alist of values or flags:

The C Preprocessor Way

int flags:

#define FLAG X 0Ox1
#define FLAG Y 0x2
#defi ne FLAG Z 0x4

flags | = FLAGS X:

The D Way

enum FLAGS { X = Ox1, Y = 0x2, Z = 0x4 };
FLAGS fl ags;

flags | = FLAGS. X;

3. Distinguishing between ascii chars and wchar chars:

The C Preprocessor Way

#i f UNI CODE
#def i ne dchar wchar _t
#def i ne TEXT(S) L##s
#el se
#defi ne dchar char
#def i ne TEXT(S) s
#endi f

dchar h[] = TEXT("hello0");

The D Way

i mport dchar; /1 contains appropriate typedef for dchar

dchar[] h = "hello";

D's optimizer will inline the function, and will do the conversion of the string constant
at compiletime.

4. Supporting legacy compilers:

The C Preprocessor Way

#i f PROTOTYPES

#def i ne P(p) p

#el se

#def i ne P(p) ()

#endi f

int func P((int x, int y));

209

The D Programming Language

The D Way

By making the D compiler open source, it will largely avoid the problem of syntactical
backwards compatibility.

5. Typediasing:

The C Preprocessor Way
#define I NT i nt

The D Way

alias int INT;

6. Using one header file for both declaration and definition:

The C Preprocessor Way

#defi ne EXTERN extern
#i ncl ude "decl ati ons. h"
#undef EXTERN

#def i ne EXTERN

#i ncl ude "decl ati ons. h"

In declarations.h:

EXTERN i nt foo;

The D Way

The declaration and the definition are the same, so there is no need to muck with the
storage class to generate both a declaration and a definition from the same source.

7. Lightweight inline functions:

The C Preprocessor Way
#define X(i) ((i) = (i) / 3)

The D Way

int X(inout int i) { returni =i / 3; }

The compiler optimizer will inline it; no efficiency islost.

8. Assert function file and line number information:

210

The D Programming Language

The C Preprocessor Way
#def i ne assert(e) ((e) || _assert(__LINE _, __FILE))

The D Way

assert() isabuilt-in expression primitive. Giving the compiler such knowledge of
assert() also enables the optimizer to know about things like the _assert() function
never returns.

9. Setting function calling conventions:

The C Preprocessor Way

#i f ndef _CRTAPI 1
#define CRTAPI1 _ cdecl
#endi f

#i f ndef _CRTAPI 2
#define CRTAPI2 _ cdecl
#endi f

int CRTAPI2 func();

The D Way

Calling conventions can be specified in blocks, so there's no need to changeit for
every function:

extern (W ndows)

{

int onefunc();
i nt anot herfunc();

10. Hiding __near or __far pointer wierdness:

The C Preprocessor Way
#define LPSTR char FAR *

The D Way

D doesn't support 16 bit code, mixed pointer sizes, and different kinds of pointers, and
so the problem isjust irrelevant.

11. Simple generic programming:

211

The D Programming Language

The C Preprocessor Way

Selecting which function to use based on text substitution:

#i f def UNI CODE

i nt getVal ueWwchar t *p);
#def i ne get Val ue get Val uew
#el se

i nt getVal ueA(char *p);
#def i ne get Val ue get Val ueA
#endi f

The D Way

D enables declarations of symbols that are aliases of other symbols:

ver si on (UNI CODE)
{
i nt getValueWwchar[] p);
al i as get Val ueWw get Val ue;
}
el se
-
i nt getValueA(char[] p);
al i as get Val ueA get Val ue;

Conditional Compilation

The C Preprocessor Way
Conditional compilation is a powerful feature of the C preprocessor, but it has its downside:

« The preprocessor has no concept of scope. #if/#endif can be interleaved with codein a
completely unstructured and disorganized fashion, making things difficult to follow.

« Conditional compilation triggers off of macros - macros that can conflict with
identifiers used in the program.

- #if expressions are evaluated in subtly different ways than C expressions are.

« The preprocessor language is fundamentally different in concept than C, for example,
whitespace and line terminators mean things to the preprocessor that they do not in C.

The D Way
D supports conditional compilation:

1. Separating version specific functionality into separate modules.

2. The debug statement for enabling/disabling debug harnesses, extra printing, etc.

3. Theversion statement for dealing with multiple versions of the program generated
from asingle set of sources.

4. Theif (0) statement.

5. The/+ +/ nesting comment can be used to comment out blocks of code.

212

The D Programming Language

Code Factoring

The C Preprocessor Way

It's common in a function to have a repetitive sequence of code to be executed in multiple
places. Performance considerations preclude factoring it out into a separate function, so it is
implemented as a macro. For example, consider this fragment from a byte code interpreter:

unsi gned char *ip; /'l byte code instruction pointer
int *stack;
int spi; /1 stack pointer
#aéfine pop() (stack[--spi])
#def i ne push(i) (stack[spi++] = (i))
while (1)
{
switch (*ip++)
{
case ADD
opl = pop();
op2 = pop();
result = opl + opz;
push(result);
br eak;
case SUB:
}

}

This suffers from numerous problems:

1. The macros must evaluate to expressions and cannot declare any variables. Consider
the difficulty of extending them to check for stack overflow/underflow.

2. The macros exist outside of the semantic symbol table, so remain in scope even
outside of the function they are declared in.

3. Parameters to macros are passed textually, not by value, meaning that the macro
implementation needs to be careful to not use the parameter more than once, and must
protect it with ().

4. Macros areinvisible to the debugger, which sees only the expanded expressions.

The D Way
D neatly addresses this with nested functions:
ubyt e* ip; /'l byte code instruction pointer
int[] stack; /1 operand stack
int spi; /1 stack pointer
int pop() { return stack[--spi]; }
void push(int i) { stack[spi++] =1i; }
while (1)
{
switch (*ip++)
{
case ADD
opl = pop();
op2 = pop();
push(opl + op2);
br eak;

213

The D Programming Language

case SUB:
}
The problems addressed are:

1. The nested functions have available the full expressive power of D functions. The
array accesses already are bounds checked (adjustable by compile time switch).

2. Nested function names are scoped just like any other name.

3. Parameters are passed by value, so need to worry about side effects in the parameter
expressions.

4. Nested functions are visible to the debugger.

Additionally, nested functions can be inlined by the implementation resulting in the same high
performance that the C macro version exhibits.

214

The D Programming Language

TheD Style

The D Styleisa set of style conventions for writing D programs. The D Style is not enforced
by the compiler, it is purely cosmetic and a matter of choice. Adhering to the D Style,
however, will make it easier for others to work with your D code and easier for you to work
with others D code. The D Style can form the starting point for a D project style guide
customized for your project team.

White Space

+ One statement per line.

« Two or more spaces per indentation level.

« Operators are separated by single spaces from their operands.

« Two blank lines separating function bodies.

« One blank line separating variable declarations from statements in function bodies.

Comments

« Use// comments to document asingleline:
. statenent; // comment
. statenent; // conment

« Useblock comments to document amultiple line block of statements:

. /*

. * comment
. * comment
. * [

. st at enent ;
. st at enent ;

+ Use nesting comments to ‘comment out' a piece of trial code:

. [+++++

. | *

. * comment
. * comment
. * [

. stat enent;
. st at enent;
. +++++/

Naming Conventions

General
Names formed by joining multiple works should have each word other than the first
capitalized.
int myFunc();

Module
Module names are dl lower case.

215

The D Programming Language

C Modules

Modules that are interfaces to C functions go into the "c" package, for example:
i mport c.stdio;

Module names should be all lower case.
Class, Struct, Union, Enum names
are capitalized.
cl ass Foo;
cl ass FooAndBar ;

Function names

Function names are not capitalized.
i nt done();
i nt doneProcessing();

Const names
Areinall caps.

Enum member names
Areinall caps.

Meaningless Type Aliases

Thingslike:
alias void VA D
alias int |NT;
alias int* pint;

should be avoided.

Declaration Style

Sincein D the declarations are | eft-associative, left justify them:
int[] x, v; /1l makes it clear that x and y are the sane type
int** p, q; /1 makes it clear that p and q are the sanme type

to emphasize their relationship. Do not use the C style:
int [1x, vy; /1 confusing since y is also an int[]
int **p, q; /1l confusing since qis also an int**

Operator Overloading

Operator overloading is a powerful tool to extend the basic types supported by the language.
But being powerful, it has great potential for creating obfuscated code. In particular, the
existing D operators have conventional meanings, such as '+ means 'add' and '<<' means 'shift
left'. Overloading operator '+ with a meaning different from 'add' is arbitrarilly confusing and
should be avoided.

Hungarian Notation
Just say no.

216

The D Programming Language

Example: wc

This program is the D version of the classic wc (wordcount) C program. It servesto
demonstrate how to read files, do array slicing, and simple symbol table management with
associative arrays.

i mport stdio;

i mport file;

int main (char[][] args)
{
int wtotal;
int | _total;
int c_total;
int[char[]] dictionary;

printf(" lines wor ds bytes file\n");
for (int i = 1; i < args.length; ++i)
{

char[] input;

int went, | _cnt, c_cnt;

int inword;

int wstart;

input = File.read(args[i]);

for (int j =0; j < input.length; j++)
{ char c;

¢ = input[j];

if (c =="\n")
++| _cnt;
if (c > "0" & c <= "9")
{
}

else if (c >= "a" && c <= "z" |
C >: n AII && C <: n ZII)
{

if (!inword)

{
wstart = j;
i nword = 1;
++w _cnt;

}

else if (inword)
{ char[] word = input[wstart .. j];

di cti onary[wor d] ++;
i nmord = 0;
}

++C_cnt;

i f (inword)

{ char[] word = input[wstart .. input.length];
di cti onary[wor d] ++;

}

printf("98luyBl u¥8lu %\n", | _cnt, wecnt, c_cnt, (char *)args[i]);

| total +=1_cnt;
w total += w cnt;

217

The D Programming Language

c_total += c_cnt;

}
if (args.length > 2)
printf("-----------mmmme -
| total, wtotal, c_total);
}
printf("---------mmmmmm oo

char[][] keys = dictionary.keys;
for (int i = 0; i < keys.length; i++)
{ char[] word;

word = keys[i];

printf("%3d % *s\n", dictionary[word],

return O;

218

wor d) ;

The D Programming Language

Compiler for D Programming L anguage

Thisisthe D compiler for Win32.

Files
\ dnd\ bi n\ drd. exe

D compiler executable
\ dnd\ bi n\shel | . exe

Simple command line shell
\dmd\ bi n\'sc.in

Global compiler settings
\'dmd\ I i b\ phobos. lib

D runtime library
\ dmd\ sr c\ phobos\

D runtime library source
\ dnd\ sr ¢\ drrd\

D compiler front end source under dual (GPL and Artistic) license
\ drd\ ht m \ d\

Documentation
\ drd\ sanpl es\ d\

Sample D programs
Requirements

+ 32 bit Windows operating system

. rrenfor Win32
e K rHtreg for Win32

Installation

Unzip thefilesin the root directory. It will create a\dmd directory with al the filesiniit. All
the tools are command line tools, which means they are run from a console window. Create a
console window in Windows XP by clicking on [Start][Command Prompt].

Example

Run:
\dnd\ bi n\shell all.sh

in the \dmd\samples\d directory for several small examples.

Compiler Arguments and Switches
dmd files... -switch...

files...
Extension File Type
none D sourcefiles
d D sourcefiles
.0bj Object filesto link in
.exe Name output executable file

219

ftp://ftp.digitalmars.com/dmd.zip
ftp://ftp.digitalmars.com/dmc.zip

The D Programming Language

.def module definition file
res resourcefile
-C
compile only, do not link
-d
allow deprecated features
-debug
compile in debug code
-debug=level
compile in debug code <= level
-debug=ident
compile in debug code identified by ident
-9
add symbolic debug info
_gt

add trace profiling hooks
-inline
inline expand functions
-l path
whereto look for imports. path is a; separated list of paths. Multiple -1's can be used,
and the paths are searched in the same order.
-Llinkerflag
pass linkerflag to the linker, for example, / ma/ | i
-O
optimize
-oobjdir
write object files to directory objdir instead of to the current directory
-release
compile release version
-unittest
compilein unittest code
-V
verbose
-ver sion=level
compilein version code >= level
-ver sion=ident
compilein version code identified by ident

Linking
Linking is done directly by the dmd compiler after a successful compile. To prevent dmd
from running the linker, use the -c switch.

The programs must be linked with the D runtime library phobos.lib, followed by the C

runtime library snn.lib. Thisis done automatically as long as the directories for the libraries
are on the LIB environment variable path. A typical way to set LIB would be:

set LIB=\dmd\Ilib;\dmlib

220

The D Programming Language

Environment Variables
The D compiler dmd uses the following environment variables:

DFLAGS
The value of DFLAGS istreated asif it were appended to the command line to
dmd.exe.

LIB

Thelinker uses LIB to search for library files. For D, it will normally be set to:
set LIB=\dnd\lib;\dmlib

LINKCMD
dmd normally runs the linker by looking for link.exe along the PATH. To use a

specific linker instead, set the LINKCM D environment variable to it. For example:
set LI NKCVD=\ dm bi n\ | i nk

PATH
If the linker is not found in the same directory asdmd.exeisin, the PATH is searched
for it. Note: other linkers named link.exe will likely not work. Make sure the Digital
Marslink.exeisfound first in the PATH before other link.exe's, or use LINKCMD
to specifically identify which linker to use.

SC.INI Initialization File

dmd will look for the initialization file sc.ini in the same directory dmd.exeresidesin. If
found, environment variable settings in the file will override any existing settings. Thisis
handy to make dmd independent of programs with conflicting use of environment variables.

Environment variables follow the[Envi r onment] section heading, in name=value pairs.
Comments are lines that start with ;. For example:

; sc.ini file for dnd
Nanes encl osed by %6 are searched for in the existing environemt
and inserted. The special nane %@%is replaced with the path

; to this file.

[Envi ronment]

LIB="9%@% ..\lib";\dmlib

DFLAGS="-1 %@% . .\ sr c\ phobos"

LI NKCVD="9%@% . .\ ..\ dm bi n"

Bugs
These are some of the major bugs:

« Thecompiler quits on the first error, and sometimes gets the line number wrong.
« The phobos D runtime library is inadequate.

« Need to write atool to convert C .h filesinto D imports.

« Array op= operations are not implemented.

« Property gettor/settor not implemented.

« In preconditions and out postconditions for member functions are not inherited.
+ It cannot be run from the IDDE.

Feedback

We welcome al feedback - kudos, flames, bugs, suggestions, hints, and most especialy
donated code!

221

The D Programming Language

Acknowledgements

The following people have contributed to the D language project; with ideas, code, expertise,
marketing, inspiration and moral support.

Bruce Eckel, Eric Engstrom, m Lubomir Litchev, Pavel Minayev, Paul Nash, Pat

Nelson, Burton Radons, Tim Rentsch, Fabio Riccardi, Bob Taniguchi, John Whited, Peter
Zatloukal

222

http://www.janknepper.com/

	Overview	11
	Overview	11
	What is D?
	Why D?
	Features To Keep From C/C++
	Features To Drop
	Who D is For
	Who D is Not For

	Major Features of D
	Object Oriented Programming
	Classes
	Operator Overloading

	Productivity
	Modules
	Declaration vs Definition
	Templates
	Associative Arrays
	Real Typedefs
	Bit type

	Functions
	Nested Functions
	Function Literals
	Dynamic Closures
	In, Out, and Inout Parameters

	Arrays
	Strings

	Resource Management
	Garbage Collection
	Explicit Memory Management
	RAII

	Performance
	Lightweight Aggregates
	Inline Assembler

	Reliability
	Contracts
	Unit Tests
	Debug Attributes and Statements
	Exception Handling
	Synchronization
	Support for Robust Techniques
	Compile Time Checks
	Runtime Checking

	Compatibility
	Operator precedence and evaluation rules
	Direct Access to C API's
	Support for all C data types
	OS Exception Handling
	Uses Existing Tools

	Project Management
	Versioning
	Deprecation
	No Warnings

	Sample D Program (sieve.d)

	Lexical
	
	Phases of Compilation
	Source Text
	End of File
	End of Line
	White Space
	Comments
	Identifiers
	String Literals
	Integer Literals
	Floating Literals
	Keywords
	Tokens
	Pragmas

	Modules
	
	Module Declaration
	Import Declaration
	Scope and Modules

	Static Construction and Destruction
	Order of Static Construction
	Order of Static Construction within a Module
	Order of Static Destruction

	Declarations
	
	Declaration Syntax
	Type Defining
	Type Aliasing
	Alias Declarations

	Types
	Basic Data Types
	Integer Promotions
	Usual Arithmetic Conversions

	Properties
	Attributes
	Expressions
	
	Assignment Operator Expressions
	Or Expressions
	Xor Expressions
	And Expressions
	Integer comparisons
	Floating point comparisons
	Notes:

	In Expressions
	New Expressions
	Cast Expressions
	this
	super
	null
	true, false
	Function Literals
	Assert Expressions

	Statements
	Labelled Statements
	Block Statement
	Expression Statement
	Declaration Statement
	If Statement
	While Statement
	Do-While Statement
	For Statement
	Switch Statement
	Continue Statement
	Break Statement
	Return Statement
	Goto Statement
	With Statement
	Synchronize Statement
	Try Statement
	Throw Statement
	Volatile Statement
	Asm Statement

	Arrays
	
	Pointers
	Static Arrays
	Dynamic Arrays

	Array Declarations
	
	Prefix Array Declarations
	Postfix Array Declarations

	Usage
	Slicing
	Array Copying
	Array Setting
	Array Concatenation
	Array Operations
	
	Examples:

	Rectangular Arrays
	Array Properties
	Setting Dynamic Array Length

	Array Bounds Checking
	Array Initialization
	Static Initialization of Static Arrays

	Special Array Types
	Arrays of Bits
	Strings
	printf() and Strings

	Associative Arrays
	Properties
	Associative Array Example: word count

	Structs, Unions, Enums
	Structs, Unions
	Static Initialization of Structs
	Static Initialization of Unions

	Enums
	Enum Properties
	Initialization of Enums

	Classes
	
	Fields
	Super Class
	Constructors
	Destructors
	Static Constructors
	Static Destructor
	Class Invariants
	Unit Tests
	Class Allocators
	Class Deallocators
	Auto Classes

	Interfaces
	Functions
	
	Virtual Functions
	Inline Functions
	Function Overloading
	Function Parameters
	Local Variables

	Nested Functions
	Delegates, Function Pointers, and Dynamic Closures

	Operator Overloading
	Unary Operator Overloading
	Overloadable Unary Operators

	Binary Operator Overloading
	
	Examples
	Rationale

	Future Directions

	Templates
	Instantiation Scope
	Argument Deduction
	Value Parameters
	Specialization
	Limitations

	Contracts
	Assert Contract
	Pre and Post Contracts
	In, Out and Inheritance
	Class Invariants

	Debug and Version
	Predefined Versions
	Specification
	Debug Statement
	Version Statement
	Debug Attribute
	Version Attribute

	Error Handling in D
	The Error Handling Problem
	The D Error Handling Solution

	Garbage Collection
	How Garbage Collection Works
	Interfacing Garbage Collected Objects With Foreign Code
	Pointers and the Garbage Collector
	Working with the Garbage Collector

	Memory Management
	Strings (and Array) Copy-on-Write
	Real Time
	Smooth Operation
	Free Lists
	Reference Counting
	Explicit Class Instance Allocation
	Mark/Release
	RAII (Resource Acquisition Is Initialization)
	Allocating Class Instances On The Stack

	Floating Point
	
	Floating Point Intermediate Values
	Complex and Imaginary types
	Rounding Control
	Exception Flags
	Floating Point Comparisons

	D x86 Inline Assembler
	Labels
	align IntegerExpression
	even
	naked
	db, ds, di, dl, df, dd, de
	Opcodes
	Special Cases

	Operands
	Operand Types
	Struct/Union/Class Member Offsets
	Special Symbols

	Opcodes Supported
	AMD Opcodes Supported

	Interfacing to C
	Interfacing to C++
	Portability Guide
	Embedding D in HTML
	D Runtime Model
	Phobos
	D Runtime Library
	Imports
	Core D: Available on all D implementations
	Standard C: interface to C functions
	Operating System and Hardware: platform specific

	compiler
	conv
	ctype
	date
	file
	gc
	intrinsic
	math
	object
	outbuffer
	path
	process
	random
	regexp
	stdint
	stream
	Reading
	Writing
	Seeking

	string
	To copy or not to copy?

	system
	thread
	zip
	stdio

	D for Win32
	Calling Conventions
	Windows Executables
	DLLs (Dynamic Link Libraries)
	Memory Allocation

	COM Programming

	D vs Other Languages
	Notes

	Programming in D for C Programmers
	
	Getting the Size of a Type
	The C Way
	The D Way

	Get the max and min values of a type
	The C Way
	The D Way

	Primitive Types
	C to D types

	Special Floating Point Values
	The C Way
	The D Way

	Taking the Modulus of a floating point number
	The C Way
	The D Way

	Dealing with NAN's in floating point compares
	The C Way
	The D Way

	Assert's are a necessary part of any good defensive coding strategy.
	The C Way
	The D Way

	Initializing all elements of an array
	The C Way
	The D Way

	Looping through an array
	The C Way
	The D Way

	Creating an array of variable size
	The C Way
	The D Way

	String Concatenation
	The C Way
	The D Way

	Formatted printing
	The C Way
	The D Way

	Forward referencing functions
	The C Way
	The D Way

	Functions that have no arguments
	The C Way
	The D Way

	Labelled break's and continue's.
	The C Way
	The D Way

	Goto Statements
	The C Way
	The D Way

	Struct tag name space
	The C Way
	The D Way

	Looking up strings
	The C Way
	The D Way

	Setting struct member alignment
	The C Way
	The D Way

	Anonymous Structs and Unions
	The C Way
	The D Way

	Declaring struct types and variables.
	The C Way
	The D Way

	Getting the offset of a struct member.
	The C Way
	The D Way

	Union initializations.
	The C Way
	The D Way

	Struct initializations.
	The C Way
	The D Way

	Array initializations.
	The C Way
	The D Way

	Escaped String Literals
	The C Way
	The D Way

	Ascii vs Wide Characters
	The C Way
	The D Way

	Arrays that parallel an enum
	The C Way
	The D Way

	Creating a new typedef'd type
	The C Way
	The D Way

	Comparing structs
	The C Way
	The D Way

	Comparing strings
	The C Way
	The D Way

	Sorting arrays
	The C Way
	The D Way

	Volatile memory access
	The C Way
	The D Way

	String literals
	The C Way
	The D Way

	Data Structure Traversal
	The C Way
	The D Way

	Programming in D for C++ Programmers
	
	Defining constructors
	The C++ Way
	The D Way

	Base class initialization
	The C++ Way
	The D Way

	Comparing structs
	The C++ Way
	The D Way

	Creating a new typedef'd type
	The C++ Way
	The D Way

	Friends
	The C++ Way
	The D Way

	Operator overloading
	The C++ Way
	The D Way

	Namespace using declarations
	The C++ Way
	The D Way

	RAII (Resource Acquisition Is Initialization)
	The C++ Way
	The D Way

	Dynamic Closures
	The C++ Way
	The D Way

	The C Preprocessor Versus D
	
	Header Files
	The C Preprocessor Way
	The D Way

	#pragma once
	The C Preprocessor Way
	The D Way

	#pragma pack
	The C Preprocessor Way
	The D Way

	Macros
	The C Preprocessor Way
	The D Way
	The C Preprocessor Way
	The D Way
	The C Preprocessor Way
	The D Way
	The C Preprocessor Way
	The D Way
	The C Preprocessor Way
	The D Way
	The C Preprocessor Way
	The D Way
	The C Preprocessor Way
	The D Way
	The C Preprocessor Way
	The D Way
	The C Preprocessor Way
	The D Way
	The C Preprocessor Way
	The D Way
	The C Preprocessor Way
	The D Way

	Conditional Compilation
	The C Preprocessor Way
	The D Way

	Code Factoring
	The C Preprocessor Way
	The D Way

	The D Style
	
	White Space
	Comments
	Naming Conventions
	Meaningless Type Aliases
	Declaration Style
	Operator Overloading
	Hungarian Notation

	Example: wc
	Compiler for D Programming Language
	Files
	Requirements
	Installation
	Example
	Compiler Arguments and Switches
	Linking
	Environment Variables
	SC.INI Initialization File
	Bugs
	Feedback

	Acknowledgements

