[image: image2.png]

The D Programming Language

[image: image3.png]

D Programming Language

This Document is a unofficial snapshot of the official online documents at

http://digitalmars.com/d/index.html
and was created and posted with permission of Walter Bright. We hope that it will be useful for offline reading, even if there is no guarantee that this document is always up-to-date.

Revision history:

April 15, 2003: First compilation by Alexander Klinsky

Corrections and suggestions to:

news://news.digitalmars.com/D

© Digital Mars, 2003

created April 18, 2003, corresponding to DMD 0.61

"It seems to me that most of the "new" programming languages fall into one of two categories: Those from academia with radical new paradigms and those from large corporations with a focus on RAD and the web. Maybe its time for a new language born out of practical experience implementing compilers." -- Michael

"Great, just what I need.. another D in programming." -- Segfault

This is the reference document for the D programming language. D was conceived in December 1999 by myself as a successor to C and C++, and has grown and evolved with helpful suggestions and critiques by my friends and colleagues. I've been told the usual, that there's no chance for a new programming language, that who do I think I am designing a language, etc. Take a look at the document and decide for yourself!

The D newsgroup XE "newsgroup" in news.digitalmars.com server is where discussions of this should go. Suggestions XE "Suggestions" , criticism, kudos, flames, etc., are all welcome there.

Note: all D users agree that by downloading and using D, or reading the D specs, they will explicitly identify any claims to intellectual property rights with a copyright or patent notice in any posted or emailed feedback sent to Digital Mars.

-Walter

Table of Content
What is D?
11
Why D?
11
Features To Keep From C/C++
12
Features To Drop
13
Who D is For
14
Who D is Not For
14
Major Features of D
15
Object Oriented Programming
15
Productivity
15
Functions
17
Arrays
17
Resource Management
18
Performance
18
Reliability
19
Compatibility
20
Project Management
21
Sample D Program (sieve.d)
21
Lexical
23
Phases of Compilation
23
Source Text
23
End of File
24
End of Line
24
White Space
24
Comments
24
Identifiers
25
String Literals
25
Integer Literals
27
Floating Literals
28
Keywords
29
Tokens
30
Pragmas
31
Modules
33
Module Declaration
33
Import Declaration
34
Scope and Modules
34
Static Construction and Destruction
35
Order of Static Construction
35
Order of Static Construction within a Module
35
Order of Static Destruction
35
Declarations
36
Declaration Syntax
36
Type Defining
37
Type Aliasing
37
Alias Declarations
37
Types
39
Basic Data Types
39
Derived Data Types
39
User Defined Types
40
Pointer Conversions
40
Implicit Conversions
40
Integer Promotions
40
Usual Arithmetic Conversions
40
Delegates
41
Properties
42
Properties for Integral Data Types
42
Properties for Floating Point Types
42
.init Property
42
Attributes
44
Linkage Attribute
45
Align Attribute
45
Deprecated Attribute
46
Protection Attribute
46
Const Attribute
46
Override Attribute
46
Static Attribute
47
Auto Attribute
47
Expressions
49
Evaluation Order
51
Expressions
51
Assign Expressions
51
Assignment Operator Expressions
51
Conditional Expressions
52
OrOr Expressions
52
AndAnd Expressions
52
Bitwise Expressions
53
Or Expressions
53
Xor Expressions
53
And Expressions
53
Equality Expressions
53
Identity Expressions
53
Relational Expressions
54
Integer comparisons
55
Floating point comparisons
55
In Expressions
56
Shift Expressions
56
Add Expressions
57
Mul Expressions
57
Unary Expressions
57
New Expressions
58
Cast Expressions
58
Postfix Expressions
59
Primary Expressions
59
this
59
super
59
null
59
true, false
59
Function Literals
59
Assert Expressions
60
Statements
61
Labelled Statements
62
Block Statement
62
Expression Statement
63
Declaration Statement
63
If Statement
63
While Statement
63
Do-While Statement
64
For Statement
64
Switch Statement
65
Continue Statement
66
Break Statement
67
Return Statement
67
Goto Statement
67
With Statement
68
Synchronize Statement
68
Try Statement
69
Throw Statement
69
Volatile Statement
69
Asm Statement
70
Arrays
72
Pointers
72
Static Arrays
72
Dynamic Arrays
72
Array Declarations
72
Usage
73
Slicing
73
Array Copying
74
Array Setting
74
Array Concatenation
74
Array Operations
75
Rectangular Arrays
76
Array Properties
76
Setting Dynamic Array Length
77
Array Bounds Checking
78
Array Initialization
78
Static Initialization of Static Arrays
78
Special Array Types
79
Arrays of Bits
79
Strings
79
Associative Arrays
80
Properties
81
Associative Array Example: word count
81
Structs, Unions, Enums
83
Structs, Unions
83
Static Initialization of Structs
83
Static Initialization of Unions
83
Enums
84
Enum Properties
85
Initialization of Enums
85
Classes
86
Fields
87
Super Class
87
Constructors
88
Destructors
89
Static Constructors
90
Static Destructor
91
Class Invariants
91
Unit Tests
92
Class Allocators
92
Class Deallocators
93
Auto Classes
93
Interfaces
93
Functions
97
Virtual Functions
97
Inline Functions
97
Function Overloading
97
Function Parameters
97
Local Variables
98
Nested Functions
98
Delegates, Function Pointers, and Dynamic Closures
101
Operator Overloading
103
Unary Operator Overloading
103
Overloadable Unary Operators
103
Overloading ++e and --e
103
Examples
103
Binary Operator Overloading
103
Overloadable Binary Operators
103
Overloading == and !=
105
Overloading <, <=, > and >=
105
Future Directions
106
Templates
107
Instantiation Scope
108
Argument Deduction
109
Value Parameters
110
Specialization
110
Limitations
110
Contracts
111
Assert Contract
111
Pre and Post Contracts
111
In, Out and Inheritance
113
Class Invariants
113
Debug and Version
114
Predefined Versions
114
Specification
115
Debug Statement
115
Version Statement
116
Debug Attribute
116
Version Attribute
117
Error Handling in D
119
The Error Handling Problem
119
The D Error Handling Solution
120
Garbage Collection
122
How Garbage Collection Works
123
Interfacing Garbage Collected Objects With Foreign Code
123
Pointers and the Garbage Collector
123
Working with the Garbage Collector
124
Memory Management
125
Strings (and Array) Copy-on-Write
125
Real Time
126
Smooth Operation
126
Free Lists
126
Reference Counting
127
Explicit Class Instance Allocation
127
Mark/Release
129
RAII (Resource Acquisition Is Initialization)
130
Allocating Class Instances On The Stack
130
Floating Point
131
Floating Point Intermediate Values
131
Complex and Imaginary types
131
Rounding Control
132
Exception Flags
132
Floating Point Comparisons
132
D x86 Inline Assembler
133
Labels
133
align IntegerExpression
133
even
134
naked
134
db, ds, di, dl, df, dd, de
134
Opcodes
134
Special Cases
135
Operands
135
Operand Types
136
Struct/Union/Class Member Offsets
137
Special Symbols
137
Opcodes Supported
137
AMD Opcodes Supported
141
Interfacing to C
142
Calling C Functions
142
Storage Allocation
143
Data Type Compatibility
143
Calling printf()
144
Structs and Unions
144
Interfacing to C++
145
Portability Guide
146
OS Specific Code
146
Embedding D in HTML
147
D Runtime Model
148
Object Model
148
Array Model
148
Phobos
150
D Runtime Library
150
Philosophy
150
Imports
150
Core D: Available on all D implementations
151
Standard C: interface to C functions
151
Operating System and Hardware: platform specific
151
compiler
152
conv
152
ctype
152
date
153
file
154
gc
154
intrinsic
155
math
157
object
160
outbuffer
160
path
161
process
162
random
162
regexp
163
stdint
164
stream
165
Reading
165
Writing
166
Seeking
167
string
169
To copy or not to copy?
169
system
171
thread
171
zip
172
stdio
172
D for Win32
173
Calling Conventions
173
Windows Executables
173
DLLs (Dynamic Link Libraries)
174
Memory Allocation
175
COM Programming
176
D vs Other Languages
177
Notes
179
Programming in D for C Programmers
180
Getting the Size of a Type
181
Get the max and min values of a type
181
Primitive Types
181
Special Floating Point Values
182
Taking the Modulus of a floating point number
182
Dealing with NAN's in floating point compares
183
Assert's are a necessary part of any good defensive coding strategy.
183
Initializing all elements of an array
184
Looping through an array
184
Creating an array of variable size
184
String Concatenation
185
Formatted printing
186
Forward referencing functions
186
Functions that have no arguments
186
Labelled break's and continue's.
187
Goto Statements
187
Struct tag name space
188
Looking up strings
188
Setting struct member alignment
189
Anonymous Structs and Unions
189
Declaring struct types and variables.
190
Getting the offset of a struct member.
190
Union initializations.
191
Struct initializations.
191
Array initializations.
191
Escaped String Literals
192
Ascii vs Wide Characters
192
Arrays that parallel an enum
193
Creating a new typedef'd type
193
Comparing structs
194
Comparing strings
195
Sorting arrays
196
Volatile memory access
196
String literals
196
Data Structure Traversal
197
Programming in D for C++ Programmers
199
Defining constructors
199
Base class initialization
200
Comparing structs
200
Creating a new typedef'd type
201
Friends
202
Operator overloading
203
Namespace using declarations
204
RAII (Resource Acquisition Is Initialization)
204
Dynamic Closures
205
The C Preprocessor Versus D
207
Header Files
207
#pragma once
207
#pragma pack
208
Macros
208
Conditional Compilation
212
Code Factoring
213
The D Style
215
White Space
215
Comments
215
Naming Conventions
215
Meaningless Type Aliases
216
Declaration Style
216
Operator Overloading
216
Hungarian Notation
216
Example: wc
217
Compiler for D Programming Language
219
Files
219
Requirements
219
Installation
219
Example
219
Compiler Arguments and Switches
219
Linking
220
Environment Variables
221
SC.INI Initialization File
221
Bugs
221
Feedback
221
Acknowledgements
222
INDEX
223

[image: image4.png]\/

Overview

What is D?

D is a general purpose systems and applications programming language. It is a higher level language than C++, but retains the ability to write high performance code and interface XE "interface" directly with the operating system XE "system" API's and with hardware. D is well suited to writing medium to large scale million line programs with teams of developers. D is easy to learn, provides many capabilities to aid the programmer, and is well suited to aggressive compiler XE "compiler" optimization technology.

D is not a scripting language, nor an interpreted language. It doesn't come with a VM, a religion, or an overriding philosophy. It's a practical language for practical programmers who need to get the job done quickly, reliably, and leave behind maintainable, easy to understand code.

D is the culmination of decades of experience implementing compilers for many diverse languages, and attempting to construct large projects using those languages. D draws inspiration from those other languages (most especially C++) and tempers it with experience and real world practicality.

Why D?

Why, indeed. Who needs another programming language?

The software industry has come a long way since the C language was invented. Many new concepts were added to the language with C++, but backwards compatibility with C was maintained, including compatibility with nearly all the weaknesses of the original design. There have been many attempts to fix those weaknesses, but the compatibility issue frustrates it. Meanwhile, both C and C++ undergo a constant accretion of new features. These new features must be carefully fitted into the existing structure without requiring rewriting old code. The end result is very complicated - the C standard is nearly 500 pages, and the C++ standard is about 750 pages! The reality of the C++ compiler XE "compiler" business is that few compilers effectively implement the entire standard.

C++ programmers tend to program in particular islands of the language, i.e. getting very proficient using certain features while avoiding other feature sets. While the code is portable from compiler XE "compiler" to compiler, it can be hard to port it from programmer to programmer. A great strength of C++ is that it can support many radically different styles of programming - but in long term use, the overlapping and contradictory styles are a hindrance.

It's frustrating that such a powerful language does not do basic things like resizing arrays XE "arrays" and concatenating strings. Yes, C++ does provide the meta programming ability to implement resizable arrays and strings like the vector type in the STL. Such fundamental features, however, ought to be part of the language. Can the power and capability of C++ be extracted, redesigned, and recast into a language that is simple, orthogonal, and practical? Can it all be put into a package that is easy for compiler XE "compiler" writers to correctly implement, and which enables compilers to efficiently generate aggressively optimized code?

Modern compiler XE "compiler" technology XE "compiler technology" has progressed to the point where language features for the purpose of compensating for primitive compiler technology can be omitted. (An example of this would be the 'register' keyword in C, a more subtle example is the macro preprocessor XE "preprocessor" in C.) We can rely on modern compiler optimization XE "optimization" technology to not need language features necessary to get acceptable code quality out of primitive compilers.

D aims to reduce software development costs by at least 10% by adding in proven productivity enhancing features and by adjusting language features so that common, time-consuming bugs XE "bugs" are eliminated from the start.

Features To Keep From C/C++

The general look of D is like C and C++. This makes it easier to learn and port code to D. Transitioning from C/C++ to D should feel natural, the programmer will not have to learn an entirely new way of doing things.

Using D will not mean that the programmer will become restricted to a specialized runtime vm (virtual machine) like the Java XE "Java" vm or the Smalltalk XE "Smalltalk" vm. There is no D vm, it's a straightforward compiler XE "compiler" that generates linkable object XE "object" files. D connects to the operating system XE "system" just like C does. The usual familiar tools like make XE "make" will fit right in with D development.

· The general look and feel of C/C++ will be maintained. It will use the same algebraic syntax, most of the same expression and statement forms, and the general layout.

· D programs can be written either in C style function XE "function" -and-data or in C++ style object XE "object" -oriented, or any mix of the two.

· The compile/link/debug XE "debug" development model will be carried forward, although nothing precludes D from being compiled into bytecode and interpreted.

· Exception handling XE "Exception handling" . More and more experience with exception handling shows it to be a superior way to handle errors than the C traditional method of using error codes and errno globals.

· Runtime Type Identification XE "Runtime Type Identification" . This is partially implemented in C++; in D it is taken to its next logical step. Fully supporting it enables better garbage collection, better debugger support, more automated persistence, etc.

· D maintains function XE "function" link compatibility with the C calling conventions XE "calling conventions" . This makes it possible for D programs to access operating system XE "system" API's directly. Programmers' knowledge and experience with existing programming API's and paradigms can be carried forward to D with minimal effort.

· Operator overloading XE "Operator overloading" . D programs can overload operators enabling extension of the basic types with user defined types.

· Templates XE "Templates" . Templates are a way to implement generic programming. Other ways include using macros XE "macros" or having a variant data type. Using macros is out. Variants are straightforward, but inefficient and lack type checking. The difficulties with C++ templates are their complexity, they don't fit well into the syntax of the language, all the various rules for conversions and overloading fitted on top of it, etc. D offers a much simpler way of doing templates.

· RAII XE "RAII" (Resource Acquisition Is Initialization XE "Initialization"). RAII techniques are an essential component of writing reliable software.

· Down and dirty programming. D will retain the ability to do down-and-dirty programming without resorting to referring to external modules compiled in a different language. Sometimes, it's just necessary to coerce a pointer or dip into assembly when doing systems work. D's goal is not to prevent down and dirty programming, but to minimize the need for it in solving routine coding tasks.

Features To Drop

· C source code compatibility. Extensions to C that maintain source compatiblity have already been done (C++ and ObjectiveC). Further work in this area is hampered by so much legacy code XE "legacy code" it is unlikely that significant improvements can be made.

· Link compatibility XE "Link compatibility" with C++. The C++ runtime object XE "object" model is just too complicated - properly supporting it would essentially imply making D a full C++ compiler XE "compiler" too.

· The C preprocessor XE "preprocessor" . Macro processing is an easy way to extend a language, adding in faux features that aren't really there (invisible to the symbolic debugger). Conditional compilation XE "Conditional compilation" , layered with #include text, macros XE "macros" , token concatenation, etc., essentially forms not one language but two merged together with no obvious distinction between them. Even worse (or perhaps for the best) the C preprocessor is a very primitive macro language. It's time to step back, look at what the preprocessor is used for, and design support for those capabilities directly into the language.

· Multiple inheritance XE "Multiple inheritance" . It's a complex XE "complex" feature of debatable value. It's very difficult to implement in an efficient manner, and compilers are prone to many bugs XE "bugs" in implementing it. Nearly all the value of MI can be handled with single inheritance coupled with interfaces and aggregation. What's left does not justify the weight of MI implementation.

· Namespaces XE "Namespaces" . An attempt to deal with the problems resulting from linking together independently developed pieces of code that have conflicting names. The idea of modules is simpler and works much better.

· Tag name space. This misfeature of C is where the tag names of struct XE "struct" 's are in a separate but parallel symbol table. C++ attempted to merge the tag name space with the regular name space, while retaining backward compatibility with legacy C code. The result is not printable.

· Forward declarations XE "Forward declarations" . C compilers semantically only know about what has lexically preceded the current state. C++ extends this a little, in that class XE "class" members XE "members" can rely on forward referenced class members. D takes this to its logical conclusion, forward declarations are no longer necessary at all. Functions can be defined in a natural order rather than the typical inside-out order commonly used in C programs to avoid writing forward declarations.

· Include files. A major cause of slow compiles as each compilation unit must reparse enormous quantities of header files. Include files should be done as importing a symbol table.

· Creating object XE "object" instances on the stack. In D, all class XE "class" objects are by reference. This eliminates the need for copy constructors, assignment operators, complex XE "complex" destructor semantics, and interactions with exception handling stack unwinding. Memory resources get freed by the garbage collector, other resources are freed by using the RAII XE "RAII" features of D.

· Trigraphs XE "Trigraphs" and digraphs XE "digraphs" . Unicode XE "Unicode" is the future.

· Preprocessor. Modern languages should not be text processing, they should be symbolic processing.

· Non-virtual member functions XE "virtual member functions" . In C++, a class XE "class" designer decides in advance if a function XE "function" is to be virtual or not. Forgetting to retrofit the base class member function to be virtual when the function gets overridden is a common (and very hard to find) coding error. Making all member functions XE "member functions" virtual, and letting the compiler XE "compiler" decide if there are no overrides and hence can be converted to non-virtual, is much more reliable.

· Bit XE "Bit" fields XE "Bit fields" of arbitrary size XE "size" . Bit fields are a complex XE "complex" , inefficient feature rarely used.

· Support for 16 bit XE "bit" computers. No consideration is given in D for mixed near/far pointers and all the machinations necessary to generate good 16 bit code. The D language design assumes at least a 32 bit flat memory space. D will fit smoothly into 64 bit architectures XE "64 bit architectures" .

· Mutual dependence of compiler XE "compiler" passes. In C++, successfully parsing the source text relies on having a symbol table, and on the various preprocessor XE "preprocessor" commands. This makes it impossible to preparse C++ source, and makes writing code analyzers and syntax directed editors painfully difficult to do correctly.

· Compiler complexity. Reducing the complexity of an implementation makes it more likely that multiple, correct implementations are available.

· Distinction between . and ->. This distinction is really not necessary. The . operator serves just as well for pointer dereferencing XE "dereferencing" .

Who D is For

· Programmers who routinely use lint XE "lint" or similar code analysis tools to eliminate bugs XE "bugs" before the code is even compiled.

· People who compile with maximum warning levels XE "warning levels" turned on and who instruct the compiler XE "compiler" to treat warnings as errors.

· Programming managers who are forced to rely on programming style XE "programming style" guidelines to avoid common C bugs XE "bugs" .

· Those who decide the promise of C++ object XE "object" oriented programming XE "object oriented programming" is not fulfilled due to the complexity of it.

· Programmers who enjoy the expressive power of C++ but are frustrated by the need to expend much effort explicitly managing memory and finding pointer bugs XE "bugs" .

· Projects that need built-in testing XE "testing" and verification.

· Teams who write apps with a million lines of code in it.

· Programmers who think the language should provide enough features to obviate the continual necessity to manipulate pointers directly.

· Numerical programmers. D has many features to directly support features needed by numerics programmers, like direct support for the complex XE "complex" data type and defined behavior for NaN XE "NaN" 's and infinities. (These are added in the new C99 standard, but not in C++.)

· D's lexical analyzer XE "lexical analyzer" and parser are totally independent of each other and of the semantic analyzer XE "semantic analyzer" . This means it is easy to write simple tools to manipulate D source perfectly without having to build a full compiler XE "compiler" . It also means that source code can be transmitted in tokenized form for specialized applications.

Who D is Not For

· Realistically, nobody is going to convert million line C or C++ programs into D, and since D does not compile unmodified C/C++ source code, D is not for legacy apps. (However, D supports legacy C API XE "C API" 's very well.)

· Very small programs - a scripting or interpreted language like Python XE "Python" , DMDScript
, or Perl XE "Perl" is likely more suitable.

· As a first programming language - Basic XE "Basic" or Java XE "Java" is more suitable for beginners. D makes an excellent second language for intermediate to advanced programmers.

· Language purists. D is a practical language, and each feature of it is evaluated in that light, rather than by an ideal. For example, D has constructs and semantics that virtually eliminate the need for pointers for ordinary tasks. But pointers are still there, because sometimes the rules need to be broken. Similary, casts are still there for those times when the typing system XE "system" needs to be overridden.

Major Features of D

This section lists some of the more interesting features of D in various categories.

Object Oriented Programming

Classes

D's object XE "object" oriented nature comes from classes. The inheritance model is single inheritance enhanced with interfaces. The class XE "class" Object sits at the root of the inheritance heirarchy, so all classes implement a common set of functionality. Classes are instantiated by reference, and so complex XE "complex" code to clean up after exceptions is not required.

Operator Overloading XE "Operator Overloading"
Classes can be crafted that work with existing operators to extend the type system XE "system" to support new types. An example would be creating a bignumber class XE "class" and then overloading the +, -, * and / operators to enable using ordinary algebraic syntax with them.

Productivity XE "Productivity"
Modules XE "Modules"
Source files have a one-to-one correspondence with modules. Instead of #include'ing the text of a file XE "file" of declarations, just import XE "import" the module. There is no need to worry about multiple imports of the same module, no need to wrapper header files with #ifndef/#endif or #pragma once kludges, etc.

Declaration XE "Declaration" vs Definition XE "Definition"
C++ usually requires that functions and classes be declared twice - the declaration that goes in the .h header file XE "header file" , and the definition that goes in the .c source file XE "source file" . This is an error prone and tedious process XE "process" . Obviously, the programmer should only need to write it once, and the compiler XE "compiler" should then extract the declaration information and make it available for symbolic importing. This is exactly how D works.

Example:

class XE "class" ABC

{

 int func() { return 7; }

 static XE "static" int z = 7;

}

int q;

There is no longer a need for a separate definition of member functions XE "member functions" , static XE "static" members XE "static members" , externs, nor for clumsy syntaxes like:

int ABC::func() { return 7; }

int ABC::z = 7;

extern XE "extern" int q;

Note: Of course, in C++, trivial functions like { return 7; } are written inline too, but complex XE "complex" ones are not. In addition, if there are any forward references XE "forward references" , the functions need to be prototyped. The following will not work in C++:

class XE "class" Foo

{

 int foo(Bar *c) { return c->bar; }

};

class XE "class" Bar

{

 public XE "public" :

 int bar() { return 3; }

};

But the equivalent D code will work:

class XE "class" Foo

{

 int foo(Bar c) { return c.bar; }

}

class XE "class" Bar

{

 int bar() { return 3; }

}

Whether a D function XE "function" is inlined or not is determined by the optimizer settings XE "optimizer settings" .

Templates XE "Templates"
D templates offer a clean way to support generic programming while offering the power of partial specialization.

Associative Arrays XE "Associative Arrays"
Associative arrays XE "arrays" are arrays with an arbitrary data type as the index rather than being limited to an integer index. In essence, associated arrays are hash tables. Associative arrays make it easy to build fast, efficient, bug-free symbol tables.

Real Typedefs

C and C++ typedefs XE "typedefs" are really type aliases, as no new type is really introduced. D implements real typedefs, where:

typedef XE "typedef" int handle;

really does create a new type handle. Type checking is enforced, and typedefs XE "typedefs" participate in function XE "function" overloading XE "function overloading" . For example:

int foo(int i);

int foo(handle h);

Bit XE "Bit" type

The fundamental data type is the bit XE "bit" , and D has a bit data type. This is most useful in creating arrays XE "arrays" of bits:

bit XE "bit" [] foo;

Functions

D has the expected support for ordinary functions including global functions, overloaded functions, inlining of functions, member functions XE "member functions" , virtual functions, function XE "function" pointers, etc. In addition:

Nested Functions XE "Nested Functions"
Functions can be nested within other functions. This is highly useful for code factoring, locality, and function XE "function" closure techniques.

Function Literals XE "Function Literals"
Anonymous functions can be embedded directly into an expression.

Dynamic Closures XE "Dynamic Closures"
Nested functions and class XE "class" member functions XE "member functions" can be referenced with closures XE "closures" (also called delegates XE "delegates"), making generic programming much easier and type safe.

In, Out, and Inout XE "Inout" Parameters

Not only does specifying this help make functions more self-documenting, it eliminates much of the necessity for pointers without sacrificing anything, and it opens up possibilities for more compiler XE "compiler" help in finding coding problems.

Such makes it possible for D to directly interface XE "interface" to a wider variety of foreign API's. There would be no need for workarounds like "Interface Definition XE "Definition" Languages".

Arrays

C arrays XE "arrays" have several faults that can be corrected:

· Dimension information is not carried around with the array, and so has to be stored and passed separately. The classic example of this are the argc XE "argc" and argv XE "argv" parameters to main(int argc, char XE "char" *argv[]).

· Arrays are not first class XE "class" objects. When an array is passed to a function XE "function" , it is converted to a pointer,even though the prototype confusingly says it's an array. When this conversion happens, all array type information gets lost.

· C arrays XE "arrays" cannot be resized. This means that even simple aggregates like a stack need to be constructed as a complex XE "complex" class XE "class" .

· C arrays XE "arrays" cannot be bounds checked, because they don't know what the array bounds are.

· Arrays are declared with the [] after the identifier. This leads to very clumsy syntax to declare things like a pointer to an array:

·
int (*array)[3];

In D, the [] for the array go on the left:

int[3] *array;

declares a pointer to an array of 3 ints

long[] func(int x);
declares a function XE "function" returning an array of longs

which is much simpler to understand.

D arrays XE "arrays" come in 4 varieties: pointers, static XE "static" arrays, dynamic arrays, and associative arrays. See Arrays.

Strings XE "Strings"
String manipulation is so common, and so clumsy in C and C++, that it needs direct support in the language. Modern languages handle string XE "string" concatenation, copying, etc., and so does D. Strings XE "Strings" are a direct consequence of improved array handling.

Resource Management

Garbage Collection XE "Garbage Collection"
D memory allocation XE "memory allocation" is fully garbage collected. Empirical experience suggests that a lot of the complicated features of C++ are necessary in order to manage memory deallocation XE "deallocation" . With garbage collection, the language gets much simpler.

There's a perception that garbage collection is for lazy, junior programmers. I remember when that was said about C++, after all, there's nothing in C++ that cannot be done in C, or in assembler for that matter.

Garbage collection eliminates the tedious, error prone memory allocation XE "memory allocation" tracking code necessary in C and C++. This not only means much faster development time and lower maintenance costs, but the resulting program frequently runs faster!

Sure, garbage collectors can be used with C++, and I've used them in my own C++ projects. The language isn't friendly to collectors, however, impeding the effectiveness of it. Much of the runtime library XE "library" code can't be used with collectors.

For a fuller discussion of this, see garbage collection.

Explicit Memory Management

Despite D being a garbage collected language, the new and delete XE "delete" operations can be overridden for particular classes so that a custom allocator can be used.

RAII XE "RAII"
RAII XE "RAII" is a modern software development technique to manage resource allocation and deallocation XE "deallocation" . D supports RAII in a controlled, predictable manner that is independent of the garbage collection cycle.

Performance XE "Performance"
Lightweight Aggregates

D supports simple C style struct XE "struct" 's, both for compatibility with C data structures and because they're useful when the full power of classes is overkill.

Inline Assembler XE "Assembler"
Device drivers, high performance system XE "system" applications, embedded systems, and specialized code sometimes need to dip into assembly language to get the job done. While D implementations are not required to implement the inline assembler, it is defined and part of the language. Most assembly code needs can be handled with it, obviating the need for separate assemblers or DLL XE "DLL" 's.

Many D implementations will also support intrinsic XE "intrinsic" functions analogously to C's support of intrinsics for I/O port manipulation, direct access to special floating point operations, etc.

Reliability XE "Reliability"
A modern language should do all it can to help the programmer flush out bugs XE "bugs" in the code. Help can come in many forms; from making it easy to use more robust techniques, to compiler XE "compiler" flagging of obviously incorrect code, to runtime checking XE "runtime checking" .

Contracts XE "Contracts"
Design by Contract XE "Design by Contract" (invented by B. Meyer) is a revolutionary technique to aid in ensuring the correctness of programs. D's version of DBC includes function XE "function" preconditions, function postconditions, class XE "class" invariants, and assert XE "assert" contracts. See Contracts
 for D's implementation.

Unit Tests XE "Unit Tests"
Unit tests can be added to a class XE "class" , such that they are automatically run upon program startup. This aids in verifying, in every build, that class implementations weren't inadvertantly broken. The unit tests form part of the source code for a class. Creating them becomes a natural part of the class development process XE "process" , as opposed to throwing the finished code over the wall to the testing XE "testing" group.

Unit tests can be done in other languages, but the result is kludgy and the languages just aren't accommodating of the concept. Unit testing XE "testing" is a main feature of D. For library XE "library" functions it works out great, serving both to guarantee that the functions actually work and to illustrate how to use the functions.

Consider the many C++ library XE "library" and application code bases out there for download on the web. How much of it comes with *any* verification tests at all, let alone unit testing XE "testing" ? Less than 1%? The usual practice is if it compiles, we assume it works. And we wonder if the warnings the compiler XE "compiler" spits out in the process XE "process" are real bugs XE "bugs" or just nattering about nits.

Along with design by contract, unit testing XE "testing" makes D far and away the best language for writing reliable, robust systems applications. Unit testing also gives us a quick-and-dirty estimate of the quality of some unknown piece of D code dropped in our laps - if it has no unit tests and no contracts, it's unacceptable.

Debug Attributes XE "Attributes" and Statements XE "Statements"
Now debug XE "debug" is part of the syntax of the language. The code can be enabled or disabled at compile time, without the use of macros XE "macros" or preprocessing commands. The debug syntax enables a consistent, portable, and understandable recognition that real source code needs to be able to generate both debug compilations and release compilations.

Exception Handling XE "Exception Handling"
The superior try-catch XE "catch" -finally XE "finally" model is used rather than just try-catch. There's no need to create dummy objects just to have the destructor implement the finally semantics.

Synchronization XE "Synchronization"
Multithreaded programming is becoming more and more mainstream, and D provides primitives to build multithreaded programs with. Synchronization XE "Synchronization" can be done at either the method or the object XE "object" level.

synchronize int func() { . }

Synchronized functions allow only one thread XE "thread" at a time to be executing that function XE "function" .

The synchronize statement puts a mutex around a block of statements, controlling access either by object XE "object" or globally.

Support for Robust Techniques

· Dynamic arrays XE "arrays" instead of pointers

· Reference variables instead of pointers

· Reference objects instead of pointers

· Garbage collection instead of explicit memory management

· Built-in primitives for thread XE "thread" synchronization

· No macros XE "macros" to inadvertently slam code

· Inline functions instead of macros XE "macros"

· Vastly reduced need for pointers

· Integral type sizes are explicit

· No more uncertainty about the signed-ness of chars

· No need to duplicate declarations in source and header files.

· Explicit parsing support for adding in debug XE "debug" code.

Compile Time Checks

· Stronger type checking

· Explicit initialization required

· Unused local variables not allowed

· No empty ; for loop bodies

· Assignments do not yield boolean results

· Deprecating of obsolete API's

Runtime Checking

· assert XE "assert" () expressions

· array bounds checking XE "bounds checking"

· undefined case XE "case" in switch XE "switch" exception

· out of memory XE "out of memory" exception

· In, out, and class XE "class" invariant XE "invariant" design by contract support

Compatibility XE "Compatibility"
Operator precedence and evaluation rules

D retains C operators and their precedence rules, order of evaluation rules, and promotion rules. This avoids subtle bugs XE "bugs" that might arise from being so used to the way C does things that one has a great deal of trouble finding bugs due to different semantics.

Direct Access to C API XE "C API" 's

Not only does D have data types that correspond to C types, it provides direct access to C functions. There is no need to write wrapper functions, parameter swizzlers, nor code to copy aggregate members XE "members" one by one.

Support for all C data types

Making it possible to interface XE "interface" to any C API XE "C API" or existing C library XE "library" code. This support includes structs, unions, enums, pointers, and all C99 types. D includes the capability to set the alignment of struct XE "struct" members XE "members" to ensure compatibility with externally imposed data formats.

OS Exception Handling XE "Exception Handling"
D's exception handling mechanism will connect to the way the underlying operating system XE "system" handles exceptions in an application.

Uses Existing Tools

D produces code in standard object XE "object" file XE "file" format, enabling the use of standard assemblers, linkers, debuggers, profilers, exe compressors, and other analyzers, as well as linking to code written in other languages.

Project Management XE "Project Management"
Versioning XE "Versioning"
D provides built-in support for generation of multiple versions of a program from the same text. It replaces the C preprocessor XE "preprocessor" #if/#endif technique.

Deprecation XE "Deprecation"
As code evolves over time, some old library XE "library" code gets replaced with newer, better versions. The old versions must be available to support legacy code XE "legacy code" , but they can be marked as deprecated XE "deprecated" . Code that uses deprecated versions will be optionally flagged as illegal by a compiler XE "compiler" switch XE "switch" , making it easy for maintenance programmers to identify any dependence on deprecated features.

No Warnings XE "Warnings"
D compilers will not generate warnings for questionable code. Code will either be acceptable to the compiler XE "compiler" or it will not be. This will eliminate any debate about which warnings are valid errors and which are not, and any debate about what to do with them. The need for compiler warnings is symptomatic of poor language design.

Sample D Program (sieve.d)

/* Sieve of Eratosthenes prime numbers */

import XE "import" c.stdio XE "stdio" ;

bit XE "bit" [8191] flags;

int main()

{ int i, count, prime, k, iter;

 printf XE "printf" ("10 iterations\n");

 for (iter = 1; iter <= 10; iter++)

 {
count = 0;

flags[] = 1;

for (i = 0; i < flags.length; i++)

{ if (flags[i])

 {
prime = i + i + 3;

k = i + prime;

while (k < flags.length)

{

 flags[k] = 0;

 k += prime;

}

count += 1;

 }

}

 }

 printf XE "printf" ("\n%d primes", count);

 return 0;

}

Lexical

In D, the lexical analysis XE "lexical analysis" is independent of the syntax parsing and the semantic analysis. The lexical analyzer XE "lexical analyzer" splits the source text up into tokens. The lexical grammar describes what those tokens are. The D lexical grammar is designed to be suitable for high speed scanning, it has a minimum of special case XE "case" rules, there is only one phase of translation, and to make it easy to write a correct scanner for. The tokens are readilly recognizable by those familiar with C and C++.

Phases of Compilation XE "Phases of Compilation"
The process XE "process" of compiling is divided into multiple phases. Each phase has no dependence on subsequent phases. For example, the scanner is not perturbed by the semantic analyser. This separation of the passes makes language tools like syntax directed editors relatively easy to produce.

1. ascii/wide char XE "wide char"
The source file XE "source file" is checked to see if it is in ASCII XE "ASCII" or wide characters, and the appropriate scanner is loaded.

2. lexical analysis XE "lexical analysis"
The source file XE "source file" is divided up into a sequence of tokens. Pragmas XE "Pragmas" are processed and removed.

3. syntax analysis
The sequence of tokens is parsed to form syntax trees.

4. semantic analysis
The syntax trees are traversed to declare variables, load symbol tables, assign types, and in general determine the meaning of the program.

5. optimization
6. code generation
Source Text

D source text can be in one of the following formats:

· UTF-8 XE "UTF-8"

· UTF-16BE XE "UTF-16BE"

· UTF-16LE XE "UTF-16LE"

· UTF-32BE XE "UTF-32BE"

· UTF-32LE XE "UTF-32LE"

Note that UTF-8 XE "UTF-8" is a superset of traditional 7-bit XE "bit" ASCII XE "ASCII" . The source text is assumed to be in UTF-8, unless one of the following BOMs (Byte Order Marks XE "Byte Order Marks") is present at the beginning of the source text:

	Format
	BOM

	UTF-8 XE "UTF-8"
	EF BB BF

	UTF-16BE XE "UTF-16BE"
	FE FF

	UTF-16LE XE "UTF-16LE"
	FF FE

	UTF-32BE XE "UTF-32BE"
	00 00 FE FF

	UTF-32LE XE "UTF-32LE"
	FF FE 00 00

	UTF-8 XE "UTF-8"
	none XE "none" of the above

There are no digraphs XE "digraphs" or trigraphs in D. The source text is split into tokens using the maximal munch technique, i.e., the lexical analyzer XE "lexical analyzer" tries to make the longest token it can. For example >> is a right shift token, not two greater than tokens.

End of File XE "End of File"

EndOfFile:

physical end of the file XE "file"

\u0000

\u001A

The source text is terminated by whichever comes first.

End of Line XE "End of Line"

EndOfLine:

\u000D

\u000A

\u000D \u000A

EndOfFile
There is no backslash line splicing, nor are there any limits on the length of a line.

White Space XE "White Space"

WhiteSpace:

Space

Space WhiteSpace

Space:

\u0020

\u0009

\u000B

\u000C

EndOfLine

Comment
White space is defined as a sequence of one or more of spaces, tabs, vertical tabs, form feeds, end of lines, or comments.

Comments XE "Comments"

Comment:

/* Characters */

// Characters EndOfLine

/+ Characters +/
D has three kinds of comments:

1. Block XE "Block" comments can span multiple lines, but do not nest.

2. Line comments terminate at the end of the line.

3. Nesting comments can span multiple lines and can nest.

Comments XE "Comments" cannot be used as token concatenators, for example, abc/**/def is two tokens, abc and def, not one abcdef token.

Identifiers XE "Identifiers"

Identifier:

IdentiferStart

IdentiferStart IdentifierChars

IdentifierChars:

IdentiferChar

IdentiferChar IdentifierChars

IdentifierStart:

_

Letter

IdentifierChar:

IdentiferStart

Digit
Identifiers XE "Identifiers" start with a letter or _, and are followed by any number of letters, _ or digits. Identifiers can be arbitrarilly long, and are case XE "case" sensitive. Identifiers starting with __ are reserved.

String Literals XE "String Literals"

StringLiteral:

SingleQuotedString

DoubleQuotedString

EscapeSequence

SingleQuotedString:

' SingleQuotedCharacters '

SingleQuotedCharacter:

Character

EndOfLine

DoubleQuotedString:

" DoubleQuotedCharacters "

DoubleQuotedCharacter:

Character

EscapeSequence

EndOfLine

EscapeSequence:

\'

\"

\?

\\

\a

\b

\f

\n

\r

\t

\v

\ EndOfFile

\x HexDigit HexDigit

\ OctalDigit

\ OctalDigit OctalDigit

\ OctalDigit OctalDigit OctalDigit

\u HexDigit HexDigit HexDigit HexDigit
A string XE "string" literal XE "literal" is either a double XE "double" quoted string, a single quoted string, or an escape sequence.

Single quoted strings are enclosed by ''. All characters between the '' are part of the string XE "string" except for EndOfLine which is regarded as a single \n character. There are no escape sequences inside '':

'hello'

'c:\root\foo.exe'

'ab\n'

string XE "string" is 4 characters, 'a', 'b', '\', 'n'

Double quoted strings are enclosed by "". Escape sequences can be embedded into them with the typical \ notation. EndOfLine is regarded as a single \n character.

"hello"

"c:\\root\\foo.exe"

"ab\n"

string XE "string" is 3 characters, 'a', 'b', and a linefeed

"ab

"

string XE "string" is 3 characters, 'a', 'b', and a linefeed

Escape strings start with a \ and form an escape character sequence. Adjacent escape strings are concatenated:

\n

the linefeed character

\t

the tab character

\"

the double XE "double" quote character

\012

octal

\x1A

hex

\u1234

wchar XE "wchar" character

\r\n

carriage return, line feed

Escape sequences not listed above are errors.

Adjacent strings are concatenated with the ~ operator, or by simple juxtaposition:

"hello " ~ "world" ~ \n
// forms the string XE "string" 'h','e','l','l','o',' ','w','o','r','l','d',linefeed

The following are all equivalent:

"ab" "c"

'ab' 'c'

'a' "bc"

"a" ~ "b" ~ "c"

\0x61"bc"

Integer Literals XE "Integer Literals"

IntegerLiteral:

Integer

Integer IntegerSuffix

Integer:

Decimal

Binary

Octal XE "Octal"

Hexadecimal XE "Hexadecimal"

IntegerSuffix:

l

L

u

U

lu

Lu

lU

LU

ul

uL

Ul

UL

Decimal:

0

NonZeroDigit

NonZeroDigit Decimal

Binary:

0b BinaryDigits

0B BinaryDigits

Octal XE "Octal" :

0 OctalDigits

Hexadecimal XE "Hexadecimal" :

0x HexDigits

0X HexDigits
Integers can be specified in decimal, binary, octal, or hexadecimal.

Decimal integers are a sequence of decimal digits.

Binary integers are a sequence of binary digits XE "binary digits" preceded by a '0b'.

Octal XE "Octal" integers are a sequence of octal digits preceded by a '0'.

Hexadecimal XE "Hexadecimal" integers are a sequence of hexadecimal digits preceded by a '0x' or followed by an 'h'.

Integers can be immediately followed by one 'l' or one 'u' or both.

The type of the integer is resolved as follows:

1. If it is decimal it is the last representable of ulong XE "ulong" , long, or int.

2. If it is not decimal, it is the last representable of ulong XE "ulong" , long, uint XE "uint" , or int.

3. If it has the 'u' suffix, it is the last representable of ulong XE "ulong" or uint XE "uint" .

4. If it has the 'l' suffix, it is the last representable of ulong XE "ulong" or long.

5. If it has the 'u' and 'l' suffixes, it is ulong XE "ulong" .

Floating Literals XE "Floating Literals"

FloatLiteral:

Float

Float FloatSuffix

Float ImaginarySuffix

Float FloatSuffix ImaginarySuffix

Float:

DecimalFloat

HexFloat

FloatSuffix:

f

F

l

L

ImaginarySuffix:

i

I
Floats can be in decimal or hexadecimal format, as in standard C.

Hexadecimal XE "Hexadecimal" floats are preceded with a 0x and the exponent is a p or P followed by a power of 2.

Floats can be followed by one f, F, l or L suffix. The f or F suffix means it is a float XE "float" , and l or L means it is an extended.

If a floating literal XE "literal" is followed by i or I, then it is an ireal XE "ireal" (imaginary) type.

Examples:

0x1.FFFFFFFFFFFFFp1023

// double XE "double" .max

0x1p-52

// double XE "double" .epsilon

1.175494351e-38F

// float XE "float" .min

6.3i

// idouble XE "idouble" 6.3

6.3fi

// ifloat XE "ifloat" 6.3

6.3LI

// ireal XE "ireal" 6.3

It is an error if the literal XE "literal" exceeds the range of the type. It is not an error if the literal is rounded to fit into the significant digits of the type.

Complex literals are not tokens, but are assembled from real and imaginary expressions in the semantic analysis:

4.5 + 6.2i

// complex XE "complex" number

Keywords XE "Keywords"
Keywords XE "Keywords" are reserved identifiers.

Keyword:

abstract XE "abstract"

alias XE "alias"

align XE "align"

asm XE "asm"

assert XE "assert"

auto XE "auto"

bit XE "bit"

body XE "body"

break XE "break"

byte XE "byte"

case XE "case"

cast XE "cast"

catch XE "catch"

cent XE "cent"

char XE "char"

class XE "class"

cfloat XE "cfloat"

cdouble XE "cdouble"

creal XE "creal"

const XE "const"

continue XE "continue"

debug XE "debug"

default XE "default"

delegate XE "delegate"

delete XE "delete"

deprecated XE "deprecated"

do XE "do"

double XE "double"

else XE "else"

enum XE "enum"

export XE "export"

extern XE "extern"

false XE "false"

final XE "final"

finally XE "finally"

float XE "float"

for XE "for"

function XE "function"

super XE "super"

null XE "null"

new XE "new"

short XE "short"

int XE "int"

long XE "long"

ifloat XE "ifloat"

idouble XE "idouble"

ireal XE "ireal"

if XE "if"

switch XE "switch"

synchronized XE "synchronized"

return XE "return"

goto XE "goto"

struct XE "struct"

interface XE "interface"

import XE "import"

static XE "static"

override XE "override"

in XE "in"

out XE "out"

inout XE "inout"

private XE "private"

protected XE "protected"

public XE "public"

invariant XE "invariant"

real XE "real"

this XE "this"

throw XE "throw"

true XE "true"

try XE "try"

typedef XE "typedef"

ubyte XE "ubyte"

ucent XE "ucent"

uint XE "uint"

ulong XE "ulong"

union XE "union"

ushort XE "ushort"

version XE "version"

void XE "void"

volatile XE "volatile"

wchar XE "wchar"

while XE "while"

with XE "with"
Tokens XE "Tokens"

Token:

Identifier

StringLiteral

IntegerLiteral

FloatLiteral

Keyword

/

/=

.

..

...

&

&=

&&

|

|=

||

-

-=

--

+

+=

++

<

<=

<<

<<=

<>

<>=

>

>=

>>=

>>>=

>>

>>>

!

!=

!==

!<>

!<>=

!<

!<=

!>

!>=

(

)

[

]

{

}

?

,

;

:

$

=

==

===

*

*=

%

%=

^

^=

~

~=
Pragmas XE "Pragmas"
Pragmas XE "Pragmas" are special token sequences that give instructions to the compiler XE "compiler" . Pragmas are processed by the lexical analyzer XE "lexical analyzer" , may appear between any other tokens, and do not affect the syntax parsing.

There is currently only one pragma, the #line pragma.

Pragma

line Integer EndOfLine

line Integer Filespec EndOfLine

Filespec

" Characters "
This sets the source line number to Integer, and optionally the source file XE "source file" name to Filespec, beginning with the next line of source text. The source file XE "file" and line number is used for printing error messages and for mapping generated code back to the source for the symbolic debugging output.

For example:

int #line 6 "foo\bar"

x;

// this is now line 6 of file XE "file" foo\bar

Note that the backslash character is not treated specially inside Filespec strings.

Modules XE "Modules"

Module:

ModuleDeclaration DeclDefs

DeclDefs

DeclDefs:

DeclDef

DeclDef DeclDefs

DeclDef:

AttributeSpecifier

ImportDeclaration

EnumDeclaration

ClassDeclaration

InterfaceDeclaration

AggregateDeclaration

Declaration XE "Declaration"

Constructor

Destructor

Invariant

Unittest

StaticConstructor

StaticDestructor

DebugSpecification

VersionSpecification

;
Modules XE "Modules" have a one-to-one correspondence with source files. The module name is the file XE "file" name with the path XE "path" and extension stripped off.

Modules XE "Modules" automatically provide a namespace scope for their contents. Modules superficially resemble classes, but differ in that:

· There's only one instance of each module, and it is statically allocated.

· There is no virtual table XE "virtual table" .

· Modules XE "Modules" do not inherit, they have no super XE "super" modules, etc.

· Only one module per file XE "file" .

· Module symbols can be imported.

· Modules XE "Modules" are always compiled at global scope, and are unaffected by surrounding attributes or other modifiers.

Module Declaration XE "Declaration"
The ModuleDeclaration sets the name of the module and what package it belongs to. If absent, the module name is taken to be the same name (stripped of path XE "path" and extension) of the source file XE "source file" name.

ModuleDeclaration:

module ModuleName ;

ModuleName:

Identifier

ModuleName . Identifier
The Identifier preceding the rightmost are the packages that the module is in. The packages correspond to directory names in the source file XE "source file" path XE "path" .

If present, the ModuleDeclaration appears syntactically first in the source file XE "source file" , and there can be only one per source file XE "file" .

Example:

module c.stdio XE "stdio" ; // this is module stdio in the c package

By convention, package and module names are all lower case XE "case" . This is because those names have a one-to-one correspondence with the operating system XE "system" 's directory and file XE "file" names, and many file systems are not case sensitive. All lower case package and module names will minimize problems moving projects between dissimilar file systems.

Import Declaration XE "Declaration"
Rather than text include files, D imports symbols symbolically with the import XE "import" declaration:

ImportDeclaration:

import XE "import" ModuleNameList ;

ModuleNameList:

ModuleName

ModuleName , ModuleNameList
The rightmost Identifier becomes the module name. The top level scope in the module is merged with the current scope.

Example:

import XE "import" c.stdio XE "stdio" ; // import module stdio from the c package

import XE "import" foo, bar; // import modules foo and bar
Scope and Modules XE "Modules"
Each module forms its own namespace. When a module is imported into another module, all its top level declarations are available without qualification. Ambiguities are illegal, and can be resolved by explicitly qualifying the symbol with the module name.

For example, assume the following modules:

Module foo

int x = 1;

int y = 2;

Module bar

int y = 3;

int z = 4;

then:

import XE "import" foo;

...

q = y;

// sets q to foo.y

and:

import XE "import" foo;

int y = 5;

q = y;

// local y overrides foo.y

and:

import XE "import" foo;

import XE "import" bar;

q = y;

// error: foo.y or bar.y?

and:

import XE "import" foo;

import XE "import" bar;

q = bar.y;
// q set to 3

Static Construction XE "Static Construction" and Destruction XE "Destruction"
Static constructors are code that gets executed to initialize a module or a class XE "class" before the main() function XE "function" gets called. Static destructors are code that gets executed after the main() function returns, and are normally used for releasing system XE "system" resources.

Order of Static Construction XE "Static Construction"
The order of static XE "static" initialization is implicitly determined by the import XE "import" declarations in each module. Each module is assumed to depend on any imported modules being statically constructed first. Other than following that rule, there is no imposed order on executing the module static constructors.

Cycles (circular dependencies) in the import XE "import" declarations are allowed as long as not both of the modules contain static XE "static" constructors or static destructors. Violation of this rule will result in a runtime exception.

Order of Static Construction XE "Static Construction" within a Module

Within a module, the static XE "static" construction occurs in the lexical order in which they appear.

Order of Static Destruction

It is defined to be exactly the reverse order that static XE "static" construction was performed in. Static destructors for individual modules will only be run if the corresponding static constructor XE "constructor" successfully completed.

Declarations

Declaration XE "Declaration" :

typedef XE "typedef" Decl

alias XE "alias" Decl

Decl

Decl:

const XE "const" Decl

static XE "static" Decl

final XE "final" Decl

synchronized XE "synchronized" Decl

deprecated XE "deprecated" Decl

BasicType BasicType2 Declarators ;

BasicType BasicType2 FunctionDeclarator

Declarators:

Declarator

Declarator , Declarators
Declaration XE "Declaration" Syntax

Declaration XE "Declaration" syntax generally reads left to right:

int x;

// x is an int

int* x;

// x is a pointer to int

int** x;
// x is a pointer to a pointer to int

int[] x;
// x is an array of ints

int*[] x;
// x is an array of pointers to ints

int[]* x;
// x is a pointer to an array of ints

Arrays, when lexically next to each other, read right to left:

int[3] x;
// x is an array of 3 ints

int[3][5] x;
// x is an array of 3 arrays XE "arrays" of 5 ints

int[3]*[5] x;
// x is an array of 5 pointers to arrays XE "arrays" of 3 ints

Pointers XE "Pointers" to functions are declared as subdeclarations:

int (*x)(char XE "char");
// x is a pointer to a function XE "function" taking a char argument

// and returning an int

int (*[] x)(char XE "char");
// x is an array of pointers to functions

// taking a char XE "char" argument and returning an int

C-style array declarations, where the [] appear to the right of the identifier, may be used as an alternative:

int x[3];
// x is an array of 3 ints

int x[3][5];
// x is an array of 3 arrays XE "arrays" of 5 ints

int (*x[5])[3];
// x is an array of 5 pointers to arrays XE "arrays" of 3 ints

In a declaration declaring multiple declarations, all the declarations must be of the same type:

int x,y;
// x and y are ints

int* x,y;
// x and y are pointers to ints

int x,*y;
// error, multiple types

int[] x,y;
// x and y are arrays XE "arrays" of ints

int x[],y;
// error, multiple types

Type Defining

Strong types can be introduced with the typedef XE "typedef" . Strong types are semantically a distinct type to the type checking system XE "system" , for function XE "function" overloading XE "function overloading" , and for the debugger.

typedef XE "typedef" int myint;

void XE "void" foo(int x) { . }

void XE "void" foo(myint m) { . }

.

myint b;

foo(b);

// calls foo(myint)

Typedefs can specify a default XE "default" initializer different from the default initializer of the underlying type:

typedef XE "typedef" int myint = 7;

myint m;

// initialized to 7

Type Aliasing XE "Aliasing"
It's sometimes convenient to use an alias XE "alias" for a type, such as a shorthand for typing out a long, complex XE "complex" type like a pointer to a function XE "function" . In D, this is done with the alias declaration:

alias XE "alias" abc.Foo.bar myint;

Aliased types are semantically identical to the types they are aliased to. The debugger cannot distinguish between them, and there is no difference as far as function XE "function" overloading XE "function overloading" is concerned. For example:

alias XE "alias" int myint;

void XE "void" foo(int x) { . }

void XE "void" foo(myint m) { . }
error, multiply defined function XE "function" foo

Type aliases are equivalent to the C typedef XE "typedef" .

Alias Declarations

A symbol can be declared as an alias XE "alias" of another symbol. For example:

import XE "import" string XE "string" ;

alias XE "alias" string XE "string" .strlen mylen;

...

int len = mylen("hello");
// actually calls string XE "string" .strlen()

The following alias XE "alias" declarations are valid:

template Foo2(T) { alias XE "alias" T t; }

instance Foo2(int) t1;
// a TemplateAliasDeclaration

alias XE "alias" instance Foo2(int).t t2;

alias XE "alias" t1.t t3;

alias XE "alias" t2 t4;

alias XE "alias" instance Foo2(int) t5;

t1.t v1;
// v1 is type int

t2 v2;

// v2 is type int

t3 v3;

// v3 is type int

t4 v4;

// v4 is type int

t5.t v5;
// v5 is type int

Aliased symbols are useful as a shorthand for a long qualified symbol name, or as a way to redirect references from one symbol to another:

version (Win32 XE "Win32")

{

 alias XE "alias" win32.foo myfoo;

}

version (linux XE "linux")

{

 alias XE "alias" linux XE "linux" .bar myfoo;

}

Aliasing XE "Aliasing" can be used to 'import XE "import" ' a symbol from an import into the current scope:

alias XE "alias" string XE "string" .strlen strlen;

Note: Type aliases can sometimes look indistinguishable from alias XE "alias" declarations:

alias XE "alias" foo.bar abc;
// is it a type or a symbol?

The distinction is made in the semantic analysis pass.

Types

Basic XE "Basic" Data Types

	void XE "void"
	no type

	bit XE "bit"
	single bit XE "bit"

	byte XE "byte"
	signed 8 bits

	ubyte XE "ubyte"
	unsigned 8 bits

	short
	signed 16 bits

	ushort XE "ushort"
	unsigned 16 bits

	int
	signed 32 bits

	uint XE "uint"
	unsigned 32 bits

	long
	signed 64 bits

	ulong XE "ulong"
	unsigned 64 bits

	cent XE "cent"
	signed 128 bits (reserved for future use)

	ucent XE "ucent"
	unsigned 128 bits (reserved for future use)

	float XE "float"
	32 bit XE "bit" floating point

	double XE "double"
	64 bit XE "bit" floating point

	real
	largest hardware implemented floating point size XE "size" (Implementation Note: 80 bits for Intel CPU's)

	ireal XE "ireal"
	a floating point value with imaginary type

	ifloat XE "ifloat"
	imaginary float XE "float"

	idouble XE "idouble"
	imaginary double XE "double"

	creal XE "creal"
	a complex XE "complex" number of two floating point values

	cfloat XE "cfloat"
	complex XE "complex" float XE "float"

	cdouble XE "cdouble"
	complex XE "complex" double XE "double"

	char XE "char"
	unsigned 8 bit XE "bit" ASCII XE "ASCII"

	wchar XE "wchar"
	unsigned Wide char XE "char" (Implementation Note: 16 bits on Win32 XE "Win32" systems, 32 bits on linux XE "linux" , corresponding to C's wchar XE "wchar" _t type)

The bit XE "bit" data type is special. It means one binary bit. Pointers XE "Pointers" or references to a bit are not allowed.

Derived Data Types

· pointer

· array

· function XE "function"

User Defined Types

· alias XE "alias"

· typedef XE "typedef"

· enum XE "enum"

· struct XE "struct"

· union XE "union"

· class XE "class"

Pointer Conversions XE "Pointer Conversions"
Casting pointers to non-pointers and vice versa is not allowed in D. This is to prevent casual manipulation of pointers as integers, as these kinds of practices can play havoc with the garbage collector and in porting code from one machine to another. If it is really, absolutely, positively necessary to do this, use a union XE "union" , and even then, be very careful that the garbage collector won't get botched by this.

Implicit Conversions XE "Conversions"
D has a lot of types, both built in and derived. It would be tedious to require casts for every type conversion, so implicit conversions step in to handle the obvious ones automatically.

A typedef XE "typedef" can be implicitly converted to its underlying type, but going the other way requires an explicit conversion. For example:

typedef XE "typedef" int myint;

int i;

myint m;

i = m;

// OK

m = i;

// error

m = (myint)i;
// OK

Integer Promotions

The following types are implicitly converted to int:

bit XE "bit"

byte XE "byte"

ubyte XE "ubyte"

short

ushort XE "ushort"

enum XE "enum"
Typedefs are converted to their underlying type.

Usual Arithmetic Conversions XE "Conversions"
The usual arithmetic conversions convert operands of binary operators to a common type. The operands must already be of arithmetic types. The following rules are applied in order:

1. Typedefs are converted to their underlying type.

2. If either operand is extended, the other operand is converted to extended.

3. Else if either operand is double XE "double" , the other operand is converted to double.

4. Else if either operand is float XE "float" , the other operand is converted to float.

5. Else the integer promotions are done on each operand, followed by:

1. If both are the same type, no more conversions are done.

2. If both are signed or both are unsigned, the smaller type is converted to the larger.

3. If the signed type is larger than the unsigned type, the unsigned type is converted to the signed type.

4. The signed type is converted to the unsigned type.

Delegates

There are no pointers-to-members XE "members" in D, but a more useful concept called delegates XE "delegates" are supported. Delegates are an aggregate of two pieces of data: an object XE "object" reference and a function XE "function" pointer. The object reference forms the this pointer when the function is called.

Delegates are declared similarly to function XE "function" pointers, except that the keyword delegate XE "delegate" takes the place of (*), and the identifier occurs afterwards:

int function XE "function" (int) fp;
// fp is pointer to a function

int delegate XE "delegate" (int) dg;
// dg is a delegate to a function XE "function"
The C style syntax for declaring pointers to functions is also supported:

int (*fp)(int);

// fp is pointer to a function XE "function"
A delegate XE "delegate" is initialized analogously to function XE "function" pointers:

int func(int);

fp = &func;

// fp points to func

class XE "class" OB

{ int member(int);

}

OB o;

dg = &o.member;

// dg is a delegate XE "delegate" to object XE "object" o and

// member function XE "function" member
Delegates cannot be initialized with static XE "static" member functions XE "member functions" or non-member functions.

Delegates are called analogously to function XE "function" pointers:

fp(3);

// call func(3)

dg(3);

// call o.member(3)

Properties XE "Properties"
Every type and expression has properties that can be queried:

int.size XE "size"
// yields

float XE "float" .nan
// yields the floating point value

(float XE "float").nan
// yields the floating point nan value

(3).size XE "size"
// yields 4 (because 3 is an int)

2.size XE "size"

// syntax error, since "2." is a floating point number

int.init
// default XE "default" initializer for int's

Properties XE "Properties" for Integral Data Types

.init

initializer (0)

.size XE "size"

size in bytes

.max

maximum value

.min

minimum value

.sign

should we do this?

Properties XE "Properties" for Floating Point XE "Floating Point" Types

.init

initializer (NaN XE "NaN")

.size XE "size"

size in bytes

.infinity
infinity value

.nan

NaN XE "NaN" value

.sign

1 if -, 0 if +

.isnan

1 if nan, 0 if not

.isinfinite
1 if +-infinity, 0 if not

.isnormal
1 if not nan or infinity, 0 if

.digits

number of digits of precision

.epsilon
smallest increment

.mantissa
number of bits in mantissa

.maxExp
maximum exponent as power of 2 (?)

.max

largest representable value that's not infinity

.min

smallest representable value that's not 0

.init Property

.init produces a constant expression that is the default XE "default" initializer. If applied to a type, it is the default initializer for that type. If applied to a variable or field, it is the default initializer for that variable or field. For example:

int a;

int b = 1;

typedef XE "typedef" int t = 2;

t c;

t d = cast XE "cast" (t)3;

int.init
// is 0

a.init

// is 0

b.init

// is 1

t.init

// is 2

c.init

// is 2

d.init

// is 3

struct XE "struct" Foo

{

 int a;

 int b = 7;

}

Foo.a.init
// is 0

Foo.b.init
// is 7

Attributes XE "Attributes"

AttributeSpecifier:

 Attribute :

 Attribute DeclDefBlock

AttributeElseSpecifier:

 AttributeElse :

 AttributeElse DeclDefBlock

 AttributeElse DeclDefBlock else DeclDefBlock

Attribute:

 LinkageAttribute

 AlignAttribute

 deprecated XE "deprecated"

 private XE "private"

 protected XE "protected"

 public XE "public"

 export XE "export"

 static XE "static"

 final XE "final"

 override XE "override"

 abstract XE "abstract"

 const XE "const"

 auto XE "auto"

AttributeElse:

 DebugAttribute

 VersionAttribute

DeclDefBlock

 DeclDef

 { }

 { DeclDefs }
Attributes XE "Attributes" are a way to modify one or more declarations. The general forms are:

attribute declaration;

affects the declaration

attribute:

affects all declarations until the next }

 declaration;

 declaration;

 ...

attribute

affects all declarations in the block

{

 declaration;

 declaration;

 ...

}

For attributes with an optional else clause:

attribute

 declaration;

else

 declaration;

attribute

affects all declarations in the block

{

 declaration;

 declaration;

 ...

}

else

{

 declaration;

 declaration;

 ...

}

Linkage Attribute

LinkageAttribute:

extern XE "extern"

extern XE "extern" (LinkageType)

LinkageType:

C

D

Windows

Pascal
D provides an easy way to call C functions and operating system XE "system" API functions, as compatibility with both is essential. The LinkageType is case XE "case" sensitive, and is meant to be extensible by the implementation (they are not keywords). C and D must be supplied, the others are what makes sense for the implementation. Implementation Note: for Win32 XE "Win32" platforms, Windows and Pascal should exist.

C function XE "function" calling conventions XE "calling conventions" are specified by:

extern XE "extern" (C):

int foo();
call foo() with C conventions

D conventions are:

extern XE "extern" (D):

or:

extern XE "extern" :

Windows API XE "Windows API" conventions are:

extern XE "extern" (Windows):

 void XE "void" *VirtualAlloc(

 void XE "void" *lpAddress,

 uint XE "uint" dwSize,

 uint XE "uint" flAllocationType,

 uint XE "uint" flProtect

);

Align XE "Align" Attribute

AlignAttribute:

align XE "align"

align XE "align" (Integer)
Specifies the alignment of struct XE "struct" members XE "members" . align XE "align" by itself sets it to the default XE "default" , which matches the default member alignment of the companion C compiler XE "compiler" . Integer specifies the alignment which matches the behavior of the companion C compiler when non-default alignments are used. A value of 1 means that no alignment is done; members are packed together.

Deprecated Attribute

It is often necessary to deprecate a feature in a library XE "library" , yet retain it for backwards compatiblity. Such declarations can be marked as deprecated XE "deprecated" , which means that the compiler XE "compiler" can be set to produce an error if any code refers to deprecated declarations:

deprecated XE "deprecated"

{

void XE "void" oldFoo();

}

Implementation Note: The compiler XE "compiler" should have a switch XE "switch" specifying if deprecated XE "deprecated" declarations should be compiled with out complaint or not.

Protection Attribute XE "Protection Attribute"
Protection is an attribute that is one of private XE "private" , protected XE "protected" , public XE "public" or export XE "export" .

Private means that only members XE "members" of the enclosing class XE "class" can access the member, or members and functions in the same module as the enclosing class. Private members cannot be overridden. Private module members are equivalent to static XE "static" declarations in C programs.

Protected means that only members XE "members" of the enclosing class XE "class" or any classes derived from that class can access the member. Protected module members are illegal.

Public means that any code within the executable can access the member.

Export means that any code outside the executable can access the member. Export is analogous to exporting definitions from a DLL XE "DLL" .

Const Attribute

const XE "const"
The const XE "const" attribute declares constants that can be evaluated at compile time. For example:

const XE "const" int foo = 7;

const XE "const"

{

 double XE "double" bar = foo + 6;

}

Override Attribute

override XE "override"
The override XE "override" attribute applies to virtual functions. It means that the function XE "function" must override a function with the same name and parameters in a base class XE "class" . The override attribute is useful for catching errors when a base class's member function gets its parameters changed, and all derived classes need to have their overriding functions updated.

class XE "class" Foo

{

 int bar();

 int abc(int x);

}

class XE "class" Foo2 : Foo

{

 override XE "override"

 {

int bar(char XE "char" c);
// error, no bar(char) in Foo

int abc(int x);

// ok

 }

}

Static Attribute

static XE "static"
The static XE "static" attribute applies to functions and data. It means that the declaration does not apply to a particular instance of an object XE "object" , but to the type of the object. In other words, it means there is no this reference.

class XE "class" Foo

{

 static XE "static" int bar() { return 6; }

 int foobar() { return 7; }

}

...

Foo f;

Foo.bar();
// produces 6

Foo.foobar();
// error, no instance of Foo

f.bar();
// produces 6;

f.foobar();
// produces 7;

Static functions are never virtual.

Static data has only one instance for the entire program, not once per object XE "object" .

Static does not have the additional C meaning of being local to a file XE "file" . Use the private XE "private" attribute in D to achieve that. For example:

module foo;

int x = 3;

// x is global

private XE "private" int y = 4;
// y is local to module foo

Static can be applied to constructors and destructors, producing static XE "static" constructors and static destructors.

Auto Attribute

auto XE "auto"
The auto XE "auto" attribute is used for local variables and for class XE "class" declarations. For class declarations, the auto attribute creates an auto class. For local declarations, auto implements the RAII XE "RAII" (Resource Acquisition Is Initialization XE "Initialization") protocol. This means that the destructor for an object XE "object" is automatically called when the auto reference to it goes out of scope. The destructor is called even if the scope is exited via a thrown exception, thus auto is used to guarantee cleanup.

Auto cannot be applied to globals, statics, data members XE "members" , inout XE "inout" or out parameters. Arrays of autos are not allowed, and auto XE "auto" function XE "function" return values are not allowed. Assignment to an auto, other than initialization, is not allowed. Rationale: These restrictions may get relaxed in the future if a compelling reason to appears.

Expressions XE "Expressions"
C and C++ programmers will find the D expressions very familiar, with a few interesting additions.

Expressions are used to compute values with a resulting type. These values can then be assigned, tested, or ignored. Expressions can also have side effects.

Expression:

AssignExpression

AssignExpression , Expression

AssignExpression:

ConditionalExpression

ConditionalExpression = AssignExpression

ConditionalExpression += AssignExpression

ConditionalExpression -= AssignExpression

ConditionalExpression *= AssignExpression

ConditionalExpression /= AssignExpression

ConditionalExpression %= AssignExpression

ConditionalExpression &= AssignExpression

ConditionalExpression |= AssignExpression

ConditionalExpression ^= AssignExpression

ConditionalExpression ~= AssignExpression

ConditionalExpression <<= AssignExpression

ConditionalExpression >>= AssignExpression

ConditionalExpression >>>= AssignExpression

ConditionalExpression:

OrOrExpression

OrOrExpression ? Expression : ConditionalExpression

OrOrExpression:

AndAndExpression

AndAndExpression || AndAndExpression

AndAndExpression:

OrExpression

OrExpression && OrExpression

OrExpression:

XorExpression

XorExpression | XorExpression

XorExpression:

AndExpression

AndExpression ^ AndExpression

AndExpression:

EqualExpression

EqualExpression & EqualExpression

EqualExpression:

RelExpression

RelExpression == RelExpression

RelExpression != RelExpression

RelExpression === RelExpression

RelExpression !== RelExpression

RelExpression:

ShiftExpression

ShiftExpression < ShiftExpression

ShiftExpression <= ShiftExpression

ShiftExpression > ShiftExpression

ShiftExpression >= ShiftExpression

ShiftExpression !<>= ShiftExpression

ShiftExpression !<> ShiftExpression

ShiftExpression <> ShiftExpression

ShiftExpression <>= ShiftExpression

ShiftExpression !> ShiftExpression

ShiftExpression !>= ShiftExpression

ShiftExpression !< ShiftExpression

ShiftExpression !<= ShiftExpression

ShiftExpression in ShiftExpression

ShiftExpression:

AddExpression

AddExpression << AddExpression

AddExpression >> AddExpression

AddExpression >>> AddExpression

AddExpression:

MulExpression

MulExpression + MulExpression

MulExpression - MulExpression

MulExpression ~ MulExpression

MulExpression:

UnaryExpression

UnaryExpression * UnaryExpression

UnaryExpression / UnaryExpression

UnaryExpression % UnaryExpression

UnaryExpression:

PostfixExpression

& UnaryExpression

++ UnaryExpression

-- UnaryExpression

* UnaryExpression

- UnaryExpression

+ UnaryExpression

! UnaryExpression

~ UnaryExpression

delete XE "delete" UnaryExpression

NewExpression

(Type) UnaryExpression

(Type) . Identifier

PostfixExpression:

PrimaryExpression

PostfixExpression . Identifier

PostfixExpression ++

PostfixExpression --

PostfixExpression (ArgumentList)

PostfixExpression [Expression]

PrimaryExpression:

Identifier

this

super XE "super"

null XE "null"

true

false XE "false"

NumericLiteral

StringLiteral

FunctionLiteral

AssertExpression

Type . Identifier

AssertExpression:

assert XE "assert" (Expression)

ArgumentList:

AssignExpression

AssignExpression , ArgumentList

NewExpression:

new BasicType Stars [AssignExpression] Declarator

new BasicType Stars (ArgumentList)

new BasicType Stars

new (ArgumentList) BasicType Stars [AssignExpression] Declarator

new (ArgumentList) BasicType Stars (ArgumentList)

new (ArgumentList) BasicType Stars

Stars

nothing

*

* Stars
Evaluation Order XE "Evaluation Order"
Unless otherwise specified, the implementation is free to evaluate the components of an expression in any order. It is an error to depend on order of evaluation when it is not specified. For example, the following are illegal:

i = ++i;

c = a + (a = b);

func(++i, ++i);

If the compiler XE "compiler" can determine that the result of an expression is illegally dependent on the order of evaluation, it can issue an error (but is not required to). The ability to detect these kinds of errors is a quality of implementation issue.

Expressions

AssignExpression , Expression
The left operand of the , is evaluated, then the right operand is evaluated. The type of the expression is the type of the right operand, and the result is the result of the right operand.

Assign Expressions

ConditionalExpression = AssignExpression
The right operand is implicitly converted to the type of the left operand, and assigned to it. The result type is the type of the lvalue, and the result value is the value of the lvalue after the assignment.

The left operand must be an lvalue.

Assignment Operator Expressions

ConditionalExpression += AssignExpression

ConditionalExpression -= AssignExpression

ConditionalExpression *= AssignExpression

ConditionalExpression /= AssignExpression

ConditionalExpression %= AssignExpression

ConditionalExpression &= AssignExpression

ConditionalExpression |= AssignExpression

ConditionalExpression ^= AssignExpression

ConditionalExpression <<= AssignExpression

ConditionalExpression >>= AssignExpression

ConditionalExpression >>>= AssignExpression
Assignment operator expressions, such as:

a op= b
are semantically equivalent to:

a = a op b
except that operand a is only evaluated once.

Conditional Expressions

OrOrExpression ? Expression : ConditionalExpression
The first expression is converted to bool, and is evaluated. If it is true, then the second expression is evaluated, and its result is the result of the conditional expression. If it is false XE "false" , then the third expression is evaluated, and its result is the result of the conditional expression. If either the second or third expressions are of type void XE "void" , then the resulting type is void. Otherwise, the second and third expressions are implicitly converted to a common type which becomes the result type of the conditional expression.

OrOr Expressions

AndAndExpression || AndAndExpression
The result type of an OrOr expression is bool, unless the right operand has type void XE "void" , when the result is type void.

The OrOr expression evaluates its left operand. If the left operand, converted to type bool, evaluates to true, then the right operand is not evaluated. If the result type of the OrOr expression is bool then the result of the expression is true. If the left operand is false XE "false" , then the right operand is evaluated. If the result type of the OrOr expression is bool then the result of the expression is the right operand converted to type bool.

AndAnd Expressions

OrExpression && OrExpression
The result type of an AndAnd expression is bool, unless the right operand has type void XE "void" , when the result is type void.

The AndAnd expression evaluates its left operand. If the left operand, converted to type bool, evaluates to false XE "false" , then the right operand is not evaluated. If the result type of the AndAnd expression is bool then the result of the expression is false. If the left operand is true, then the right operand is evaluated. If the result type of the AndAnd expression is bool then the result of the expression is the right operand converted to type bool.

Bitwise Expressions

Bit XE "Bit" wise expressions perform a bitwise operation on their operands. Their operands must be integral types. First, the default XE "default" integral promotions are done. Then, the bitwise operation is done.

Or Expressions

XorExpression | XorExpression
The operands are OR'd together.

Xor Expressions

AndExpression ^ AndExpression
The operands are XOR'd together.

And Expressions

EqualExpression & EqualExpression
The operands are AND'd together.

Equality Expressions

RelExpression == RelExpression

RelExpression != RelExpression
Equality expressions compare the two operands for equality (==) or inequality (!=). The type of the result is bool. The operands go through the usual conversions to bring them to a common type before comparison.

If they are integral values or pointers, equality is defined as the bit XE "bit" pattern of the type matches exactly. Equality for struct XE "struct" objects means the bit patterns of the objects match exactly (the existence of alignment holes in the objects is accounted for, usually by setting them all to 0 upon initialization). Equality for floating point types is more complicated. -0 and +0 compare as equal. If either or both operands are NAN, then both the == and != comparisons XE "comparisons" return false XE "false" . Otherwise, the bit patterns are compared for equality.

For complex XE "complex" numbers, equality is defined as equivalent to:

x.re == y.re && x.im == y.im

and inequality is defined as equivalent to:

x.re != y.re || x.im != y.im

For class XE "class" objects, equality is defined as the result of calling Object.eq(). Two null XE "null" objects compare as equal, if only one is null they compare not equal.

For static XE "static" and dynamic arrays XE "arrays" , equality is defined as the lengths of the arrays matching, and all the elements are equal.

Identity Expressions XE "Identity Expressions"

RelExpression === RelExpression

RelExpression !== RelExpression
The === compares for identity, and !== compares for not identity. The type of the result is bool. The operands go through the usual conversions to bring them to a common type before comparison.

For operand types other than class XE "class" objects, static XE "static" or dynamic arrays XE "arrays" , identity is defined as being the same as equality.

For class XE "class" objects, identity is defined as the object XE "object" references are for the same object.

For static XE "static" and dynamic arrays XE "arrays" , identity is defined as referring to the same array elements.

Relational Expressions XE "Relational Expressions"

ShiftExpression < ShiftExpression

ShiftExpression <= ShiftExpression

ShiftExpression > ShiftExpression

ShiftExpression >= ShiftExpression

ShiftExpression !<>= ShiftExpression

ShiftExpression !<> ShiftExpression

ShiftExpression <> ShiftExpression

ShiftExpression <>= ShiftExpression

ShiftExpression !> ShiftExpression

ShiftExpression !>= ShiftExpression

ShiftExpression !< ShiftExpression

ShiftExpression !<= ShiftExpression

ShiftExpression in ShiftExpression
First, the integral promotions are done on the operands. The result type of a relational expression is bool.

For class XE "class" objects, the result of Object.cmp() forms the left operand, and 0 forms the right operand. The result of the relational expression (o1 op o2) is:

(o1.cmp(o2) op 0)

It is an error to compare objects if one is null XE "null" .

For static XE "static" and dynamic arrays XE "arrays" , the result of the relational op is the result of the operator applied to the first non-equal element of the array. If two arrays compare equal, but are of different lengths, the shorter array compares as "less" than the longer array.

Integer comparisons XE "comparisons"
Integer comparisons XE "comparisons" happen when both operands are integral types.

	Integer comparison operators

	Operator
	Relation

	<
	less

	>
	greater

	<=
	less or equal

	>=
	greater or equal

	==
	equal

	!=
	not equal

It is an error to have one operand be signed and the other unsigned for a <, <=, > or >= expression. Use casts to make both operands signed or both operands unsigned.

Floating point comparisons XE "comparisons"
If one or both operands are floating point, then a floating point comparison is performed.

Useful floating point operations must take into account NAN values. In particular, a relational operator can have NAN operands. The result of a relational operation on float XE "float" values is less, greater, equal, or unordered (unordered means either or both of the operands is a NAN). That means there are 14 possible comparison conditions to test for:

	Floating point comparison operators

	Operator
	Greater Than
	Less Than
	Equal
	Unordered
	Exception
	Relation

	==
	F
	F
	T
	F
	no
	equal

	!=
	T
	T
	F
	T
	no
	unordered, less, or greater

	>
	T
	F
	F
	F
	yes
	greater

	>=
	T
	F
	T
	F
	yes
	greater or equal

	<
	F
	T
	F
	F
	yes
	less

	<=
	F
	T
	T
	F
	yes
	less or equal

	!<>=
	F
	F
	F
	T
	no
	unordered

	<>
	T
	T
	F
	F
	yes
	less or greater

	<>=
	T
	T
	T
	F
	yes
	less, equal, or greater

	!<=
	T
	F
	F
	T
	no
	unordered or greater

	!<
	T
	F
	T
	T
	no
	unordered, greater, or equal

	!>=
	F
	T
	F
	T
	no
	unordered or less

	!>
	F
	T
	T
	T
	no
	unordered, less, or equal

	!<>
	F
	F
	T
	T
	no
	unordered or equal

Notes:

1. For floating point comparison operators, (a !op b) is not the same as !(a op b).

2. "Unordered" means one or both of the operands is a NAN.

3. "Exception" means the Invalid Exception is raised if one of the operands is a NAN.

In Expressions

ShiftExpression in ShiftExpression
An associative array can be tested to see if an element is in the array:

int foo[char XE "char" []];

.

if ("hello" in foo)

.

The in expression has the same precedence as the relational expressions <, <=, etc.

Shift XE "Shift" Expressions

AddExpression << AddExpression

AddExpression >> AddExpression

AddExpression >>> AddExpression
The operands must be integral types, and undergo the usual integral promotions. The result type is the type of the left operand after the promotions. The result value is the result of shifting the bits by the right operand's value.

<< is a left shift. >> is a signed right shift. >>> is an unsigned right shift.

It's illegal to shift by more bits than the size XE "size" of the quantity being shifted:

int c;

c << 33;
error

Add Expressions

MulExpression + MulExpression

MulExpression - MulExpression
If the operands are of integral types, they undergo integral promotions, and then are brought to a common type using the usual arithmetic conversions.

If either operand is a floating point type, the other is implicitly converted to floating point and they are brought to a common type via the usual arithmetic conversions.

If the first operand is a pointer, and the second is an integral type, the resulting type is the type of the first operand, and the resulting value is the pointer plus (or minus) the second operand multiplied by the size XE "size" of the type pointed to by the first operand.

For the + operator, if both operands are arrays XE "arrays" of a compatible type, the resulting type is an array of that compatible type, and the resulting value is the concatenation of the two arrays.

Mul Expressions

UnaryExpression * UnaryExpression

UnaryExpression / UnaryExpression

UnaryExpression % UnaryExpression
The operands must be arithmetic types. They undergo integral promotions, and then are brought to a common type using the usual arithmetic conversions.

For integral operands, the *, /, and % correspond to multiply, divide, and modulus operations. For multiply, overflows are ignored and simply chopped to fit into the integral type. If the right operand of divide or modulus operators is 0, a DivideByZeroException is thrown.

For floating point operands, the operations correspond to the IEEE 754 XE "IEEE 754" floating point equivalents. The modulus operator only works with reals, it is illegal to use it with imaginary or complex XE "complex" operands.

Unary XE "Unary" Expressions

& UnaryExpression

++ UnaryExpression

-- UnaryExpression

* UnaryExpression

- UnaryExpression

+ UnaryExpression

! UnaryExpression

~ UnaryExpression

delete XE "delete" UnaryExpression

NewExpression

(Type) UnaryExpression

(Type) . Identifier
New XE "New" Expressions

New XE "New" expressions are used to allocate memory on the garbage collected heap (default XE "default") or using a class XE "class" specific allocator.

To allocate multidimensional arrays XE "arrays" , the declaration reads in the same order as the prefix array declaration order.

char XE "char" [][] foo;
// dynamic array of strings

...

foo = new char XE "char" [][30];
// allocate 30 arrays XE "arrays" of strings

Cast XE "Cast" Expressions

In C and C++, cast XE "cast" expressions are of the form:

(type) unaryexpression

There is an ambiguity in the grammar, however. Consider:

(foo) - p;

Is this a cast XE "cast" of a dereference of negated p to type foo, or is it p being subtracted from foo? This cannot be resolved without looking up foo in the symbol table to see if it is a type or a variable. But D's design goal is to have the syntax be context free - it needs to be able to parse the syntax without reference to the symbol table. So, in order to distinguish a cast from a parenthesized subexpression, a different syntax is necessary.

C++ does this by introducing:

dynamic_cast XE "cast" (expression)

which is ugly and clumsy to type. D introduces the cast XE "cast" keyword:

cast XE "cast" (foo) -p;
cast (-p) to type foo

(foo) - p;
subtract p from foo

cast XE "cast" has the nice characteristic that it is easy to do a textual search for it, and takes some of the burden off of the relentlessly overloaded () operator.

D differs from C/C++ in another aspect of casts. Any casting of a class XE "class" reference to a derived class reference is done with a runtime check to make sure it really is a proper downcast. This means that it is equivalent to the behavior of the dynamic_cast XE "cast" operator in C++.

class XE "class" A { ... }

class XE "class" B : A { ... }

void XE "void" test(A a, B b)

{

 B bx = a;

error, need cast XE "cast"

 B bx = cast XE "cast" (B) a;
bx is null XE "null" if a is not a B

 A ax = b;

no cast XE "cast" needed

 A ax = cast XE "cast" (A) b;
no runtime check needed for upcast

}

D does not have a Java XE "Java" style instanceof operator, because the cast XE "cast" operator performs the same function XE "function" :

Java XE "Java" :

if (a instanceof B)

D:

if ((B) a)

Postfix Expressions

PostfixExpression . Identifier

PostfixExpression -> Identifier

PostfixExpression ++

PostfixExpression --

PostfixExpression (ArgumentList)

PostfixExpression [Expression]
Primary Expressions

Identifier

this

super XE "super"

null XE "null"

true

false XE "false"

NumericLiteral

StringLiteral

FunctionLiteral

AssertExpression

Type . Identifier
this XE "this"
Within a non-static XE "static" member function XE "function" , this resolves to a reference to the object XE "object" that called the function.

super XE "super"
Within a non-static XE "static" member function XE "function" , super XE "super" resolves to a reference to the object XE "object" that called the function, cast XE "cast" to its base class XE "class" . It is an error if there is no base class. super is not allowed in struct XE "struct" member functions XE "member functions" .

null XE "null"
The keyword null XE "null" represents the null pointer value; technically it is of type (void XE "void" *). It can be implicitly cast XE "cast" to any pointer type. The integer 0 cannot be cast to the null pointer. Nulls are also used for empty arrays XE "arrays" .

true, false XE "false"
These are of type bit XE "bit" and resolve to values 1 and 0, respectively.

Function Literals XE "Function Literals"

FunctionLiteral

function XE "function" (ParameterList) FunctionBody

function XE "function" Type (ParameterList) FunctionBody

delegate XE "delegate" (ParameterList) FunctionBody

delegate XE "delegate" Type (ParameterList) FunctionBody
FunctionLiterals enable embedding anonymous functions directly into expressions. For example:

int function XE "function" (char XE "char" c) fp;

void XE "void" test()

{

 static XE "static" int foo(char XE "char" c) { return 6; }

 fp = foo;

}

is exactly equivalent to:

int function XE "function" (char XE "char" c) fp;

void XE "void" test()

{

 fp = function XE "function" int(char XE "char" c) { return 6;};

}

And:

int abc(int delegate XE "delegate" (long i));

void XE "void" test()

{ int b = 3;

 int foo(long c) { return 6 + b; }

 abc(foo);

}

is exactly equivalent to:

int abc(int delegate XE "delegate" (long i));

void XE "void" test()

{ int b = 3;

 abc(delegate XE "delegate" int(long c) { return 6 + b; });

}

If the Type is omitted, it is treated as void XE "void" . When comparing with nested functions, the function XE "function" form is analogous to static XE "static" or non-nested functions, and the delegate XE "delegate" form is analogous to non-static nested functions.

Assert Expressions

AssertExpression:

assert XE "assert" (Expression)
Asserts evaluate the expression. If the result is false XE "false" , an AssertException is thrown. If the result is true, then no exception is thrown. It is an error if the expression contains any side effects that the program depends on. The compiler XE "compiler" may optionally not evaluate assert XE "assert" expressions at all. The result type of an assert expression is void XE "void" . Asserts are a fundamental part of the Design by Contract
 support in D.

Statements XE "Statements"
C and C++ programmers will find the D statements very familiar, with a few interesting additions.

Statement:

LabeledStatement

BlockStatement

ExpressionStatement

DeclarationStatement

IfStatement

DebugStatement

VersionStatement

WhileStatement

DoWhileStatement

ForStatement

SwitchStatement

CaseStatement

DefaultStatement

ContinueStatement

BreakStatement

ReturnStatement

GotoStatement

WithStatement

SynchronizeStatement

TryStatement

ThrowStatement

VolatileStatement

AsmStatement

· Labeled Statements

· Block Statement

· Expression Statement

· Declaration Statement

· If Statement

· Debug Statement

· Version Statement

· While Statement

· Do-While Statement

· For Statement

· Switch Statement

· Case Statement

· Default Statement

· Continue Statement

· Break Statement

· Return Statement

· Goto Statement

· With Statement

· Synchronize Statement

· Try Statement

· Throw Statement

· Volatile Statement

· Asm Statement

Labelled Statements XE "Statements"
Statements XE "Statements" can be labelled. A label is an identifier that precedes a statement.

LabelledStatement:

Identifier ':' Statement
Any statement can be labelled, including empty statements, and so can serve as the target of a goto XE "goto" statement. Labelled statements can also serve as the target of a break XE "break" or continue XE "continue" statement.

Labels are in a name space independent of declarations, variables, types, etc. Even so, labels cannot have the same name as local declarations. The label name space is the body XE "body" of the function XE "function" they appear in. Label name spaces do not nest, i.e. a label inside a block statement is accessible from outside that block.

Block XE "Block" Statement

A block statement is a sequence of statements enclosed by { }. The statements are executed in lexical order.

BlockStatement:

{ }

{ StatementList }

StatementList:

Statement

Statement StatementList
A block statement introduces a new scope for local symbols. A local symbol's name, however, must be unique within the function XE "function" .

void XE "void" func1(int x)

{ int x;
// illegal, x is multiply defined in function XE "function" scope

}

void XE "void" func2()

{

 int x;

 {
int x;
// illegal, x is multiply defined in function XE "function" scope

 }

}

void XE "void" func3()

{

 {
int x;

 }

 {
int x;
// illegal, x is multiply defined in function XE "function" scope

 }

}

void XE "void" func4()

{

 {
int x;

 }

 {
x++;
// illegal, x is undefined

 }

}

The idea is to avoid bugs XE "bugs" in complex XE "complex" functions caused by scoped declarations inadvertantly hiding previous ones. Local names should all be unique within a function XE "function" .

Expression Statement

The expression is evaluated.

ExpressionStatement:

Expression ;
Expressions that have no affect, like (x + x), are illegal in expression statements.

Declaration XE "Declaration" Statement

Declaration XE "Declaration" statements declare and initialize variables.

DeclarationStatement:

Type IdentifierList ;

IdentifierList:

Variable

Variable , IdentifierList

Variable:

Identifier

Identifier = AssignmentExpression
If no AssignmentExpression is there to initialize the variable, it is initialized to the default XE "default" value for its type.

If XE "If" Statement

If statements provide simple conditional execution of statements.

IfStatement:

if (Expression) Statement

if (Expression) Statement else Statement
Expression is evaluated and must have a type that can be converted to a boolean. If it's true the if statement is transferred to, else the else statement is transferred to.

The 'dangling else' parsing problem is solved by associating the else with the nearest if statement.

While XE "While" Statement

While statements implement simple loops.

WhileStatement:

while (Expression) Statement
Expression is evaluated and must have a type that can be converted to a boolean. If it's true the statement is executed. After the statement is executed, the Expression is evaluated again, and if true the statement is executed again. This continues until the Expression evaluates to false XE "false" .

A break XE "break" statement will exit the loop. A continue XE "continue" statement will transfer directly to evaluationg Expression again.

Do XE "Do" -While Statement

Do-While statements implement simple loops.

DoStatement:

do Statement while (Expression)
Statement is executed. Then Expression is evaluated and must have a type that can be converted to a boolean. If it's true the loop is iterated again. This continues until the Expression evaluates to false XE "false" .

A break XE "break" statement will exit the loop. A continue XE "continue" statement will transfer directly to evaluationg Expression again.

For XE "For" Statement

For statements implement loops with initialization, test, and increment clauses.

ForStatement:

for (Initialize; Test; Increment) Statement

Initialize:

empty

Expression

Declaration XE "Declaration"

Test:

empty

Expression

Increment:

empty

Expression
Initializer is executed. Test is evaluated and must have a type that can be converted to a boolean. If it's true the statement is executed. After the statement is executed, the Increment is executed. Then Test is evaluated again, and if true the statement is executed again. This continues until the Test evaluates to false XE "false" .

A break XE "break" statement will exit the loop. A continue XE "continue" statement will transfer directly to the Increment.

If Initializer declares a variable, that variable's scope extends through the end of Statement. For example:

for (int i = 0; i < 10; i++)

foo(i);

is equivalent to:

{ int i;

 for (i = 0; i < 10; i++)

foo(i);

}

Function bodies cannot be empty:

for (int i = 0; i < 10; i++)

;
// illegal

Use instead:

for (int i = 0; i < 10; i++)

{

}

The Initializer may be omitted. Test may also be omitted, and if so, it is treated as if it evaluated to true.

Switch Statement

A switch XE "switch" statement goes to one of a collection of case XE "case" statements depending on the value of the switch expression.

SwitchStatement:

switch XE "switch" (Expression) BlockStatement

CaseStatement:

case XE "case" Expression : Statement

DefaultStatement:

default XE "default" : Statement
Expression is evaluated. The result type T must be of integral type or char XE "char" [] or wchar XE "wchar" []. The result is compared against each of the case XE "case" expressions. If there is a match, the corresponding case statement is transferred to.

If none XE "none" of the case XE "case" expressions match, and there is a default XE "default" statement, the default statement is transferred to.

If none XE "none" of the case XE "case" expressions match, and there is not a default XE "default" statement, a SwitchException is thrown. The reason for this is to catch XE "catch" the common programming error of adding a new value to an enum XE "enum" , but failing to account for the extra value in switch XE "switch" statements.

The case XE "case" expressions must all evaluate to a constant value or array, and be implicitly convertible to the type T of the switch XE "switch" Expression.

Case expressions must all evaluate to distinct values. There may not be two or more default XE "default" statements.

Case statements and default XE "default" statements associated with the switch XE "switch" can be nested within block statements; they do not have to be in the outermost block. For example, this is allowed:

switch XE "switch" (i)

{

 case XE "case" 1:

 {

case XE "case" 2:

 }

break XE "break" ;

}

Like in C and C++, case XE "case" statements 'fall through' to subsequent case values. A break XE "break" statement will exit the switch XE "switch" BlockStatement. For example:

switch XE "switch" (i)

{

 case XE "case" 1:

x = 3;

 case XE "case" 2:

x = 4;

break XE "break" ;

 case XE "case" 3:

x = 5;

break XE "break" ;

}

will set x to 4 if i is 1.

Note: Unlike C and C++, strings can be used in switch XE "switch" expressions. For example:

char XE "char" [] name;

...

switch XE "switch" (name)

{

 case XE "case" "fred":

 case XE "case" "sally":

...

}

For applications like command line switch XE "switch" processing, this can lead to much more straightforward code, being clearer and less error prone. Both ascii and wchar XE "wchar" strings are allowed.

Implementation Note: The compiler XE "compiler" 's code generator may assume that the case XE "case" statements are sorted by frequency of use, with the most frequent appearing first and the least frequent last. Although this is irrelevant as far as program correctness is concerned, it is of performance interest.

Continue XE "Continue" Statement

A continue XE "continue" aborts the current iteration of its enclosing loop statement, and starts the next iteration.

ContinueStatement:

continue XE "continue" ;

continue XE "continue" Identifier ;
continue XE "continue" executes the next iteration of its innermost enclosing while, for, or do loop. The increment clause is executed.

If continue XE "continue" is followed by Identifier, the Identifier must be the label of an enclosing while, for, or do loop, and the next iteration of that loop is executed. It is an error if there is no such statement.

Any intervening finally XE "finally" clauses are executed, and any intervening synchronization objects are released.

Note: If a finally XE "finally" clause executes a return, throw XE "throw" , or goto XE "goto" out of the finally clause, the continue XE "continue" target is never reached.

Break XE "Break" Statement

A break XE "break" exits the enclosing statement.

BreakStatement:

break XE "break" ;

break XE "break" Identifier ;
break XE "break" exits the innermost enclosing while, for, do, or switch XE "switch" statement, resuming execution at the statement following it.

If break XE "break" is followed by Identifier, the Identifier must be the label of an enclosing while, for, do or switch XE "switch" statement, and that statement is exited. It is an error if there is no such statement.

Any intervening finally XE "finally" clauses are executed, and any intervening synchronization objects are released.

Note: If a finally XE "finally" clause executes a return, throw XE "throw" , or goto XE "goto" out of the finally clause, the break XE "break" target is never reached.

Return XE "Return" Statement

A return exits the current function XE "function" and supplies its return value.

ReturnStatement:

return;

return Expression ;
Expression is required if the function XE "function" specifies a return type that is not void XE "void" . The Expression is implicitly converted to the function return type.

At least one return statement is required if the function XE "function" specifies a return type that is not void XE "void" .

Expression is illegal if the function XE "function" specifies a void XE "void" return type.

Before the function XE "function" actually returns, any enclosing finally XE "finally" clauses are executed, and any enclosing synchronization objects are released.

The function XE "function" will not return if any enclosing finally XE "finally" clause does a return, goto XE "goto" or throw XE "throw" that exits the finally clause.

If there is an out postcondition (see design by contract), that postcondition is executed after the Expression is evaluated and before the function XE "function" actually returns.

Goto XE "Goto" Statement

A goto XE "goto" transfers to the statement labelled with Identifier.

GotoStatement:

goto XE "goto" Identifier ;
Any intervening finally XE "finally" clauses are executed, along with releasing any intervening synchronization mutexes.

It is illegal for a goto XE "goto" to be used to skip initializations.

With XE "With" Statement

The with statement is a way to simplify repeated references to the same object XE "object" .

WithStatement:

with (Expression) BlockStatement

with (TemplateInstance) BlockStatement
where Expression evaluates to an Object reference. Within the with body XE "body" the referenced Object is searched first for identifier symbols. The with statement

with (expression)

{

 ...

 ident;

}

is semantically equivalent to:

{

 Object tmp;

 tmp = expression;

 ...

 tmp.ident;

}

Note that expression only gets evaluated once. The with statement does not change what this or super XE "super" refer to.

Synchronize XE "Synchronize" Statement

The synchronize statement wraps a statement with critical section to synchronize access among multiple threads.

SynchronizeStatement:

synchronized XE "synchronized" Statement

synchronized XE "synchronized" (Expression) Statement
synchronized XE "synchronized" allows only one thread XE "thread" at a time to execute Statement.

synchronized XE "synchronized" (Expression), where Expression evaluates to an Object reference, allows only one thread XE "thread" at a time to use that Object to execute the Statement.

The synchronization gets released even if Statement terminates with an exception, goto XE "goto" , or return.

Example:

synchronized XE "synchronized" { ... }

This implements a standard critical section.

Try XE "Try" Statement

Exception handling is done with the try-catch XE "catch" -finally XE "finally" statement.

TryStatement:

try BlockStatement Catches

try BlockStatement Catches finally XE "finally" BlockStatement

try BlockStatement finally XE "finally" BlockStatement

Catches:

LastCatch

Catch

Catch Catches

LastCatch:

catch XE "catch" BlockStatement

Catch:

catch XE "catch" (Parameter) BlockStatement
Parameter declares a variable v of type T, where T is Object or derived from Object. v is initialized by the throw XE "throw" expression if T is of the same type or a base class XE "class" of the throw expression. The catch XE "catch" clause will be executed if the exception object XE "object" is of type T or derived from T.

If just type T is given and no variable v, then the catch XE "catch" clause is still executed.

It is an error if any Catch Parameter type T1 hides a subsequent Catch with type T2, i.e. it is an error if T1 is the same type as or a base class XE "class" of T2.

LastCatch catches all exceptions.

Throw XE "Throw" Statement

Throw an exception.

ThrowStatement:

throw XE "throw" Expression ;
Expression is evaluated and must be an Object reference. The Object reference is thrown as an exception.

Volatile XE "Volatile" Statement

Do not cache values across volatile XE "volatile" statement boundaries.

VolatileStatement:

volatile XE "volatile" Statement
Statement is evaluated, and no common subexpressions or memory references cached in registers are propagated either into it or out of it. This is useful for accessing memory that can change asynchronously, such as memory mapped I/O or memory accessed by multiple threads.

A volatile XE "volatile" statement does not guarantee atomicity. For that, use synchronized XE "synchronized" statements.

Asm Statement

Inline assembler is supported with the asm XE "asm" statement:

AsmStatement:

asm XE "asm" { }

asm XE "asm" { AsmInstructionList }

AsmInstructionList:

AsmInstruction ;

AsmInstruction ; AsmInstructionList
An asm XE "asm" statement enables the direct use of assembly language instructions. This makes it easy to obtain direct access to special CPU features without resorting to an external assembler. The D compiler XE "compiler" will take care of the function XE "function" calling conventions XE "calling conventions" , stack setup, etc.

The format of the instructions is, of course, highly dependent on the native instruction set of the target CPU, and so is implementation defined. But, the format will follow the following conventions:

· It must use the same tokens as the D language uses.

· The comment form must match the D language comments.

· Asm instructions are terminated by a ;, not by an end of line.

These rules exist to ensure that D source code can be tokenized independently of syntactic or semantic analysis.

For example, for the Intel Pentium:

int x = 3;

asm XE "asm"

{

 mov
EAX,x;

// load x and put it in register EAX

}

Inline assembler can be used to access hardware directly:

int gethardware()

{

 asm XE "asm"

 {

 mov
EAX, dword ptr 0x1234;

 }

}

For some D implementations, such as a translator from D to C, an inline assembler makes no sense, and need not be implemented. The version statement can be used to account for this:

version (InlineAsm)

{

 asm XE "asm"

 {

...

 }

}

else

{

 ... some workaround ...

}

Arrays

There are four kinds of arrays XE "arrays" :

	int* p;
	Pointers XE "Pointers" to data

	int[3] s;
	Static arrays XE "arrays"

	int[] a;
	Dynamic arrays XE "arrays"

	int[char XE "char" []] x;
	Associative arrays XE "arrays" (discussed later)

Pointers XE "Pointers"

int* p;

These are simple pointers to data, analogous to C pointers. Pointers XE "Pointers" are provided for interfacing with C and for specialized systems work. There is no length associated with it, and so there is no way for the compiler XE "compiler" or runtime to do bounds checking XE "bounds checking" , etc., on it. Most conventional uses for pointers can be replaced with dynamic arrays XE "arrays" , out and inout XE "inout" parameters, and handles (references).

Static Arrays XE "Static Arrays"

int[3] s;

These are analogous to C arrays XE "arrays" . Static arrays are distinguished by having a length fixed at compile time.

Dynamic Arrays XE "Dynamic Arrays"

int[] a;

Dynamic arrays XE "arrays" contain a length and a garbage collected pointer to the array data.

Array Declarations

There are two ways to declare arrays XE "arrays" , prefix and postfix. The prefix form is the preferred method, especially for non-trivial types.

Prefix Array Declarations

Prefix declarations appear before the identifier being declared and read right to left, so:

int[] a;
// dynamic array of ints

int[4][3] b;
// array of 3 arrays XE "arrays" of 4 ints each

int[][5] c;
// array of 5 dynamic arrays XE "arrays" of ints.

int*[]*[3] d;
// array of 3 pointers to dynamic arrays XE "arrays" of pointers to ints

int[]* e;
// pointer to dynamic array of ints

Postfix Array Declarations

Postfix declarations appear after the identifier being declared and read left to right. Each group lists equivalent declarations:

// dynamic array of ints

int[] a;

int a[];

// array of 3 arrays XE "arrays" of 4 ints each

int[4][3] b;

int[4] b[3];

int b[3][4];

// array of 5 dynamic arrays XE "arrays" of ints.

int[][5] c;

int[] c[5];

int c[5][];

// array of 3 pointers to dynamic arrays XE "arrays" of pointers to ints

int*[]*[3] d;

int*[]* d[3];

int* (*d[3])[];

// pointer to dynamic array of ints

int[]* e;

int (*e[]);

Rationale: The postfix form matches the way arrays XE "arrays" are declared in C and C++, and supporting this form provides an easy migration path XE "path" for programmers used to it.

Usage

There are two broad kinds of operations to do on an array - affecting the handle to the array, and affecting the contents of the array. C only has operators to affect the handle. In D, both are accessible.

The handle to an array is specified by naming the array, as in p, s or a:

int* p;

int[3] s;

int[] a;

int* q;

int[3] t;

int[] b;

p = q;

p points to the same thing q does.

p = s;

p points to the first element of the array s.

p = a;

p points to the first element of the array a.

s = ...;
error, since s is a compiled in static XE "static"

reference to an array.

a = p;

error, since the length of the array pointed

to by p is unknown

a = s;

a is initialized to point to the s array

a = b;

a points to the same array as b does

Slicing XE "Slicing"
Slicing XE "Slicing" an array means to specify a subarray of it. For example:

int[10] a;
declare array of 10 ints

int[] b;

b = a[1..3];
a[1..3] is a 2 element array consisting of

a[1] and a[2]

The [] is shorthand for a slice of the entire array. For example, the assignments to b:

int[10] a;

int[] b;

b = a;

b = a[];

b = a[0 .. a.length];

are all semantically equivalent.

Slicing XE "Slicing" is not only handy for referring to parts of other arrays XE "arrays" , but for converting pointers into bounds-checked arrays:

int* p;

int[] b = p[0..8];

Array Copying

When the slice operator appears as the lvalue of an assignment expression, it means that the contents of the array are the target of the assignment rather than a reference to the array. Array copying happens when the lvalue is a slice, and the rvalue is an array of or pointer to the same type.

int[3] s;

int[3] t;

s[] = t;

the 3 elements of t[3] are copied into s[3]

s[] = t[];

the 3 elements of t[3] are copied into s[3]

s[1..2] = t[0..1];
same as s[1] = t[0]

s[0..2] = t[1..3];
same as s[0] = t[1], s[1] = t[2]

s[0..4] = t[0..4];
error, only 3 elements in s

s[0..2] = t;

error, different lengths for lvalue and rvalue

Overlapping copies are an error:

s[0..2] = s[1..3];
error, overlapping copy

s[1..3] = s[0..2];
error, overlapping copy

Disallowing overlapping makes it possible for more aggressive parallel code optimizations than possible with the serial semantics of C.

Array Setting

If a slice operator appears as the lvalue of an assignment expression, and the type of the rvalue is the same as the element type of the lvalue, then the lvalue's array contents are set to the rvalue.

int[3] s;

int* p;

s[] = 3;

same as s[0] = 3, s[1] = 3, s[2] = 3

p[0..2] = 3;

same as p[0] = 3, p[1] = 3

Array Concatenation XE "Concatenation"
The binary operator ~ is the cat operator. It is used to concatenate arrays XE "arrays" :

int[] a;

int[] b;

int[] c;

a = b ~ c;
Create an array from the concatenation of the

b and c arrays XE "arrays"
Many languages overload the + operator to mean concatenation. This confusingly leads to, does:

"10" + 3

produce the number 13 or the string XE "string" "103" as the result? It isn't obvious, and the language designers wind up carefully writing rules to disambiguate it - rules that get incorrectly implemented, overlooked, forgotten, and ignored. It's much better to have + mean addition, and a separate operator to be array concatenation.

Similarly, the ~= operator means append, as in:

a ~= b;

a becomes the concatenation of a and b

Concatenation XE "Concatenation" always creates a copy of its operands, even if one of the operands is a 0 length array, so:

a = b

a refers to b

a = b ~ c[0..0]

a refers to a copy of b

Array Operations

In general, (a[n..m] op e) is defined as:

for (i = n; i < m; i++)

 a[i] op e;

So, for the expression:

a[] = b[] + 3;

the result is equivalent to:

for (i = 0; i < a.length; i++)

 a[i] = b[i] + 3;

When more than one [] operator appears in an expression, the range represented by all must match.

a[1..3] = b[] + 3;
error, 2 elements not same as 3 elements

Examples:

int[3] abc;

// static XE "static" array of 3 ints

int[] def = { 1, 2, 3 };
// dynamic array of 3 ints

void XE "void" dibb(int *array)

{

array[2];

// means same thing as *(array + 2)

*(array + 2);

// get 2nd element

}

void XE "void" diss(int[] array)

{

array[2];

// ok

*(array + 2);

// error, array is not a pointer

}

void XE "void" ditt(int[3] array)

{

array[2];

// ok

*(array + 2);

// error, array is not a pointer

}

Rectangular Arrays

Experienced FORTRAN numerics programmers know that multidimensional "rectangular" arrays XE "arrays" for things like matrix operations are much faster than trying to access them via pointers to pointers resulting from "array of pointers to array" semantics. For example, the D syntax:

double XE "double" [][] matrix;

declares matrix as an array of pointers to arrays XE "arrays" . (Dynamic arrays are implemented as pointers to the array data.) Since the arrays can have varying sizes (being dynamically sized), this is sometimes called "jagged" arrays. Even worse for optimizing the code, the array rows can sometimes point to each other! Fortunately, D static XE "static" arrays, while using the same syntax, are implemented as a fixed rectangular layout:

double XE "double" [3][3] matrix;

declares a rectangular matrix with 3 rows and 3 columns, all contiguously in memory. In other languages, this would be called a multidimensional array and be declared as:

double XE "double" matrix[3,3];

Array Properties XE "Properties"
Static array properties are:

	size XE "size"
	Returns the array length multiplied by the number of bytes per array element.

	length XE "length"
	Returns the number of elements in the array. This is a fixed quantity for static XE "static" arrays XE "arrays" .

	dup XE "dup"
	Create a dynamic array of the same size XE "size" and copy the contents of the array into it.

	reverse XE "reverse"
	Reverses in place the order of the elements in the array. Returns the array.

	sort XE "sort"
	Sorts in place the order of the elements in the array. Returns the array.

Dynamic array properties are:

	size XE "size"
	Returns the size XE "size" of the dynamic array reference, which is 8 on 32 bit XE "bit" machines.

	length
	Get/set number of elements in the array.

	dup
	Create a dynamic array of the same size XE "size" and copy the contents of the array into it.

	reverse
	Reverses in place the order of the elements in the array. Returns the array.

	sort
	Sorts in place the order of the elements in the array. Returns the array.

Examples:

p.length
error, length not known for pointer

s.length
compile time constant 3

a.length
runtime value

p.dup

error, length not known

s.dup

creates an array of 3 elements, copies

elements s into it

a.dup

creates an array of a.length elements, copies

elements of a into it

Setting Dynamic Array Length

The .length property of a dynamic array can be set as the lvalue of an = operator:

array.length = 7;

This causes the array to be reallocated in place, and the existing contents copied over to the new array. If the new array length is shorter, only enough are copied to fill the new array. If the new array length is longer, the remainder is filled out with the default XE "default" initializer.

To maximize efficiency, the runtime always tries to resize the array in place to avoid extra copying. It will always do a copy if the new size XE "size" is larger and the array was not allocated via the new operator or a previous resize operation.

This means that if there is an array slice immediately following the array being resized, the resized array could overlap the slice; i.e.:

char XE "char" [] a = new char[20];

char XE "char" [] b = a[0..10];

char XE "char" [] c = a[10..20];

b.length = 15;
// always resized in place because it is sliced

// from a[] which has enough memory for 15 chars

b[11] = 'x';
// a[15] and c[5] are also affected

a.length = 1;

a.length = 20;
// no net change to memory layout

c.length = 12;
// always does a copy because c[] is not at the

// start of a gc XE "gc" allocation block

c[5] = 'y';
// does not affect contents of a[] or b[]

a.length = 25;
// may or may not do a copy

a[3] = 'z';
// may or may not affect b[3] which still overlaps

// the old a[3]

To guarantee copying behavior, use the .dup property to ensure a unique array that can be resized.

These issues also apply to concatenting arrays XE "arrays" with the ~ and ~= operators.

Resizing a dynamic array is a relatively expensive operation. So, while the following method of filling an array:

int[] array;

while (1)

{ c = getinput();

 if (!c)

 break XE "break" ;

 array.length = array.length + 1;

 array[array.length - 1] = c;

}

will work, it will be efficient. A more practical approach would be to minimize the number of resizes:

int[] array;

array.length = 100; // guess

for (i = 0; 1; i++)

{ c = getinput();

 if (!c)

break XE "break" ;

 if (i == array.length)

array.length = array.length * 2;

 array[i] = c;

}

array.length = i;

Picking a good initial guess is an art, but you usually can pick a value covering 99% of the cases. For example, when gathering user input from the console - it's unlikely to be longer than 80.

Array Bounds Checking

It is an error to index an array with an index that is less than 0 or greater than or equal to the array length. If an index is out of bounds, an ArrayBoundsError exception is raised if detected at runtime, and an error if detected at compile time. A program may not rely on array bounds checking XE "bounds checking" happening, for example, the following program is incorrect:

try

{

 for (i = 0; ; i++)

 {

array[i] = 5;

 }

}

catch XE "catch" (ArrayBoundsError)

{

 // terminate loop

}

The loop is correctly written:

for (i = 0; i < array.length; i++)

{

 array[i] = 5;

}

Implementation Note: Compilers should attempt to detect array bounds errors at compile time, for example:

int[3] foo;

int x = foo[3];

// error, out of bounds

Insertion of array bounds checking XE "bounds checking" code at runtime should be turned on and off with a compile time switch XE "switch" .

Array Initialization XE "Initialization"
· Pointers XE "Pointers" are initialized to null XE "null" .

· Static array contents are initialized to the default XE "default" initializer for the array element type.

· Dynamic arrays XE "arrays" are initialized to having 0 elements.

· Associative arrays XE "arrays" are initialized to having 0 elements.

Static Initialization XE "Initialization" of Static Arrays

int[3] a = [1:2, 3];

// a[0] = 0, a[1] = 2, a[2] = 3

This is most handy when the array indices are given by enums:

enum XE "enum" Color { red, blue, green };

int value[Color.max] = [blue:6, green:2, red:5];

If any members XE "members" of an array are initialized, they all must be. This is to catch XE "catch" common errors where another element is added to an enum XE "enum" , but one of the static XE "static" instances of arrays XE "arrays" of that enum was overlooked in updating the initializer list.

Special Array Types

Arrays of Bits

Bit XE "Bit" vectors can be constructed:

bit XE "bit" [10] x;

// array of 10 bits

The amount of storage used up is implementation dependent. Implementation Note: on Intel CPUs it would be rounded up to the next 32 bit XE "bit" size XE "size" .

x.length

// 10, number of bits

x.size XE "size"

// 4, bytes of storage

So, the size XE "size" per element is not (x.size / x.length).

Strings XE "Strings"
Languages should be good at handling strings. C and C++ are not good at it. The primary difficulties are memory management, handling of temporaries, constantly rescanning the string XE "string" looking for the terminating 0, and the fixed arrays XE "arrays" .

Dynamic arrays XE "arrays" in D suggest the obvious solution - a string XE "string" is just a dynamic array of characters. String literals become just an easy way to write character arrays.

char XE "char" [] str;

char XE "char" [] str1 = "abc";

Strings XE "Strings" can be copied, compared, concatenated, and appended:

str1 = str2;

if (str1 < str3) ...

func(str3 + str4);

str4 += str1;

with the obvious semantics. Any generated temporaries get cleaned up by the garbage collector (or by using alloca()). Not only that, this works with any array not just a special String array.

A pointer to a char XE "char" can be generated:

char XE "char" *p = &str[3];
// pointer to 4th element

char XE "char" *p = str;

// pointer to 1st element

Since strings, however, are not 0 terminated in D, when transfering a pointer to a string XE "string" to C, add a terminating 0:

str.append(0);

The type of a string XE "string" is determined by the semantic phase of compilation. The type is one of: ascii, wchar XE "wchar" , ascii[], wchar[], and is determined by implicit conversion rules. If there are two equally applicable implicit conversions, the result is an error. To disambiguate these cases, a cast XE "cast" is approprate:

(wchar XE "wchar" [])"abc"
// this is an array of wchar characters

It is an error to implicitly convert a string XE "string" containing non-ascii characters to an ascii string or an ascii constant.

(ascii)"\u1234"

// error

Strings XE "Strings" a single character in length can also be exactly converted to a char XE "char" or wchar XE "wchar" constant:

char XE "char" c;

wchar XE "wchar" u;

c = "b";

// c is assigned the character 'b'

u = 'b';

// u is assigned the wchar XE "wchar" character 'b'

u = 'bc';

// error - only one wchar XE "wchar" character at a time

u = "b"[0];

// u is assigned the wchar XE "wchar" character 'b'

u = \r;

// u is assigned the carriage return wchar XE "wchar" character

printf XE "printf" () and Strings XE "Strings"
printf XE "printf" () is a C function XE "function" and is not part of D. printf() will print C strings, which are 0 terminated. There are two ways to use printf() with D strings. The first is to add a terminating 0, and cast XE "cast" the result to a char XE "char" *:

str.append(0);

printf XE "printf" ("the string XE "string" is '%s'\n", (char XE "char" *)str);

The second way is to use the precision specifier. The way D arrays XE "arrays" are laid out, the length comes first, so the following works:

printf XE "printf" ("the string XE "string" is '%.*s'\n", str);

In the future, it may be necessary to just add a new format specifier to printf XE "printf" () instead of relying on an implementation dependent detail.

Associative Arrays XE "Associative Arrays"
D goes one step further with arrays XE "arrays" - adding associative arrays. Associative arrays have an index that is not necessarilly an integer, and can be sparsely populated. The index for an associative array is called the key.

Associative arrays XE "arrays" are declared by placing the key type within the [] of an array declaration:

int[char XE "char" []] b;

// associative array b of ints that are

// indexed by an array of characters

b["hello"] = 3;

// set value associated with key "hello" to 3

func(b["hello"]);
// pass 3 as parameter to func()

Particular keys in an associative array can be removed with the delete XE "delete" operator:

delete XE "delete" b["hello"];

This confusingly appears to delete XE "delete" the value of b["hello"], but does not, it removes the key "hello" from the associative array.

The InExpression yields a boolean result indicating if a key is in an associative array or not:

if ("hello" in b)

...

Key types cannot be functions or voids.

Properties XE "Properties"
Properties XE "Properties" for associative arrays XE "arrays" are:

	size XE "size"
	Returns the size XE "size" of the reference to the associative array; it is typically 8.

	length
	Returns number of values in the associative array. Unlike for dynamic arrays XE "arrays" , it is read-only.

	keys
	Returns dynamic array, the elements of which are the keys in the associative array.

	values
	Returns dynamic array, the elements of which are the values in the associative array.

	rehash
	Reorganizes the associative array in place so that lookups are more efficient. rehash is effective when, for example, the program is done loading up a symbol table and now needs fast lookups in it. Returns a reference to the reorganized array.

Associative Array Example: word count

 import XE "import" stdio XE "stdio" ;

// C printf XE "printf" ()

 import XE "import" file XE "file" ;

// D file I/O

 int main (char XE "char" [][] args)

 {

int word_total;

int line_total;

int char XE "char" _total;

int[char XE "char" []] dictionary;

printf XE "printf" (" lines words bytes file XE "file" \n");

for (int i = 1; i < args.length; ++i)
// program arguments

{

 char XE "char" [] input;

// input buffer

 int w_cnt, l_cnt, c_cnt;
// word, line, char XE "char" counts

 int inword;

 int wstart;

 input = File.read(args[i]);

// read file XE "file" into input[]

 for (int j = 0; j < input.length; j++)

 { char XE "char" c;

c = input[j];

if (c == "\n")

 ++l_cnt;

if (c >= "0" && c <= "9")

{

}

else if (c >= "a" && c <= "z" ||

 c >= "A" && c <= "Z")

{

 if (!inword)

 {

wstart = j;

inword = 1;

++w_cnt;

 }

}

else if (inword)

{ char XE "char" [] word = input[wstart .. j];

 dictionary[word]++;

// increment count for word

 inword = 0;

}

++c_cnt;

 }

 if (inword)

 { char XE "char" [] word = input[wstart .. input.length];

dictionary[word]++;

 }

 printf XE "printf" ("%8ld%8ld%8ld %.*s\n", l_cnt, w_cnt, c_cnt, args[i]);

 line_total += l_cnt;

 word_total += w_cnt;

 char XE "char" _total += c_cnt;

}

if (args.length > 2)

{

 printf XE "printf" ("-------------------------------------\n%8ld%8ld%8ld total",

line_total, word_total, char XE "char" _total);

}

printf XE "printf" ("-------------------------------------\n");

char XE "char" [][] keys = dictionary.keys;
// find all words in dictionary[]

for (int i = 0; i < keys.length; i++)

{ char XE "char" [] word;

 word = keys[i];

 printf XE "printf" ("%3d %.*s\n", dictionary[word], word);

}

return 0;

 }

Structs, Unions, Enums

Structs, Unions

AggregateDeclaration:

Tag { DeclDefs }

Tag Identifier { DeclDefs }

Tag Identifier ;

Tag:

struct XE "struct"

union XE "union"
They work like they do in C, with the following exceptions:

· no bit XE "bit" fields

· alignment can be explicitly specified

· no separate tag name space - tag names go into the current scope

· declarations like:

·
struct XE "struct" ABC x;

are not allowed, replace with:

ABC x;

· anonymous structs/unions are allowed as members XE "members" of other structs/unions

· Default initializers for members XE "members" can be supplied.

· Member functions and static XE "static" members XE "static members" are allowed.

Structs and unions are meant as simple aggregations of data, or as a way to paint a data structure over hardware or an external type. External types can be defined by the operating system XE "system" API, or by a file XE "file" format. Object oriented features are provided with the class XE "class" data type.

Static Initialization XE "Initialization" of Structs

Static struct XE "struct" members XE "members" are by default XE "default" initialized to 0, and floating point values to NAN. If a static XE "static" initializer is supplied, the members are initialized by the member name, colon, expression syntax. The members may be initialized in any order.

struct XE "struct" X { int a; int b; int c; int d = 7;}

static XE "static" X x = { a:1, b:2};
// c is set to 0, d to 7

static XE "static" X z = { c:4, b:5, a:2 , d:5};
 // z.a = 2, z.b = 5, z.c = 4, d = 5

Static Initialization XE "Initialization" of Unions

Unions are initialized explicitly.

union XE "union" U { int a; double XE "double" b; }

static XE "static" U u = { b : 5.0 };

// u.b = 5.0

Other members XE "members" of the union XE "union" that overlay the initializer, but occupy more storage, have the extra storage initialized to zero.

Enums

EnumDeclaration:

enum XE "enum" identifier { EnumMembers }

enum XE "enum" { EnumMembers }

enum XE "enum" identifier ;

EnumMembers:

EnumMember

EnumMember ,

EnumMember , EnumMembers

EnumMember:

Identifier

Identifier = Expression
Enums replace the usual C use of #define macros XE "macros" to define constants. Enums can be either anonymous, in which case XE "case" they simply define integral constants, or they can be named, in which case they introduce a new type.

enum XE "enum" { A, B, C }
// anonymous enum

Defines the constants A=0, B=1, C=2 in a manner equivalent to:

const XE "const" int A = 0;

const XE "const" int B = 1;

const XE "const" int C = 2;

Whereas:

enum XE "enum" X { A, B, C }
// named enum

Define a new type X which has values X.A=0, X.B=1, X.C=2

Named enum XE "enum" members XE "members" can be implicitly cast XE "cast" to integral types, but integral types cannot be implicitly cast to an enum type.

Enums must have at least one member.

If an Expression is supplied for an enum XE "enum" member, the value of the member is set to the result of the Expression. The Expression must be resolvable at compile time. Subsequent enum members XE "members" with no Expression are set to the value of the previous member plus one:

enum XE "enum" { A, B = 5+7, C, D = 8, E XE "E" }

Sets A=0, B=12, C=13, D=8, and E XE "E" =9.

Enum Properties XE "Properties"

.min

Smallest value of enum XE "enum"

.max

Largest value of enum XE "enum"

.size XE "size"

Size of storage for an enumerated value

For example:

X.min

is X.A

X.max

is X.C

X.size XE "size"

is same as int.size

Initialization XE "Initialization" of Enums

In the absense of an explicit initializer, an enum XE "enum" variable is initialized to the first enum value.

enum XE "enum" X { A=3, B, C }

X x;

// x is initialized to 3

Classes

The object XE "object" -oriented features of D all come from classes. The class XE "class" heirarchy has as its root the class Object. Object defines a minimum level of functionality that each derived class has, and a default XE "default" implementation for that functionality.

Classes are programmer defined types. Support for classes are what make D an object XE "object" oriented language, giving it encapsulation, inheritance, and polymorphism. D classes support the single inheritance paradigm, extended by adding support for interfaces. Class objects are instantiated by reference only.

A class XE "class" can be exported, which means its name and all its non-private XE "private" members XE "members" are exposed externally to the DLL XE "DLL" or EXE.

A class XE "class" declaration is defined:

ClassDeclaration:

class XE "class" Identifier [SuperClass {, InterfaceClass }] ClassBody

SuperClass:

: Identifier

InterfaceClass:

Identifier

ClassBody:

{ Declarations }
Classes consist of:

super XE "super" class XE "class"

interfaces

dynamic fields

static XE "static" fields

types

functions

static XE "static" functions

dynamic functions

constructors

destructors

static XE "static" constructors

static XE "static" destructors

invariants

unit tests

allocators

deallocators

A class XE "class" is defined:

class XE "class" Foo

{

 ... members XE "members" ...

}

Note that there is no trailing ; after the closing } of the class XE "class" definition. It is also not possible to declare a variable var like:

class XE "class" Foo { } var;

Instead:

class XE "class" Foo { }

Foo var;

Fields XE "Fields"
Class members XE "members" are always accessed with the . operator. There are no :: or -> operators as in C++.

The D compiler XE "compiler" is free to rearrange the order of fields in a class XE "class" to optimally pack them in an implementation-defined manner. Hence, alignment statements, anonymous structs, and anonymous unions are not allowed in classes because they are data layout mechanisms. Consider the fields much like the local variables in a function XE "function" - the compiler assigns some to registers and shuffles others around all to get the optimal stack frame layout. This frees the code designer to organize the fields in a manner that makes the code more readable rather than being forced to organize it according to machine optimization rules. Explicit control of field layout is provided by struct XE "struct" /union XE "union" types, not classes.

In C++, it is common practice to define a field, along with "object XE "object" -oriented" get and set functions for it:

class XE "class" Abc

{
int property;

void XE "void" setProperty(int newproperty) { property = newproperty; }

int getProperty() { return property; }

};

Abc a;

a.setProperty(3);

int x = a.getProperty();

All this is quite a bit XE "bit" of typing, and it tends to make code unreadable by filling it with getProperty() and setProperty() calls. In D, get'ers and set'ers take advantage of the idea that an lvalue is a set'er, and an rvalue is a get'er:

class XE "class" Abc

{
int myprop;

void XE "void" property(int newproperty) { myprop = newproperty; } // set'er

int property() { return myprop; }
// get'er

}

which is used as:

Abc a;

a.property = 3;

// equivalent to a.property(3)

int x = a.property;

// equivalent to int x = a.property()

Thus, in D you can treat a property like it was a simple field name. A property can start out actually being a simple field name, but if later if becomes necessary to make getting and setting it function XE "function" calls, no code needs to be modified other than the class XE "class" definition.

Super Class

All classes inherit from a super XE "super" class XE "class" . If one is not specified, it inherits from Object. Object forms the root of the D class inheritance heirarchy.

Constructors

Members are always initialized to the default XE "default" initializer for their type, which is usually 0 for integer types and NAN for floating point types. This eliminates an entire class XE "class" of obscure problems that come from neglecting to initialize a member in one of the constructors. In the class definition, there can be a static XE "static" initializer to be used instead of the default:

class XE "class" Abc

{

 int a;
// default XE "default" initializer for a is 0

 long b = 7;
// default XE "default" initializer for b is 7

 float XE "float" f;
// default XE "default" initializer for f is NAN

}

This static XE "static" initialization is done before any constructors are called.

Constructors are defined with a function XE "function" name of this and having no return value:

class XE "class" Foo

{

 this(int x)

// declare constructor XE "constructor" for Foo

 { ...

 }

 this()

 { ...

 }

}

Base class XE "class" construction is done by calling the base class constructor XE "constructor" by the name super XE "super" :

class XE "class" A { this(int y) { } }

class XE "class" B : A

{

 int j;

 this()

 {

...

super XE "super" (3);
// call base constructor XE "constructor" A.this(3)

...

 }

}

Constructors can also call other constructors for the same class XE "class" in order to share common initializations:

class XE "class" C

{

 int j;

 this()

 {

...

 }

 this(int i)

 {

this();

j = 3;

 }

}

If no call to constructors via this or super XE "super" appear in a constructor XE "constructor" , and the base class XE "class" has a constructor, a call to super() is inserted at the beginning of the constructor.

If there is no constructor XE "constructor" for a class XE "class" , but there is a constructor for the base class, a default XE "default" constructor of the form:

this() { }

is implicitly generated.

Class object XE "object" construction is very flexible, but some restrictions apply:

1. It is illegal for constructors to mutually call each other:

2.
this() { this(1); }

3.
this(int i) { this(); }
// illegal, cyclic constructor XE "constructor" calls

4. If any constructor XE "constructor" call appears inside a constructor, any path XE "path" through the constructor must make exactly one constructor call:

5.
this()
{ a || super XE "super" (); }
// illegal

6.
this() { this(1) || super XE "super" (); }
// ok

7.
this()

8.
{

9.
 for (...)

10.
 {

11.

super XE "super" ();
// illegal, inside loop

12.
 }

13.
}

14. It is illegal to refer to this implicitly or explicitly prior to making a constructor XE "constructor" call.

15. Constructor calls cannot appear after labels (in order to make it easy to check for the previous conditions in the presence of goto XE "goto" 's).

Instances of class XE "class" objects are created with NewExpressions:

A a = new A(3);

The following steps happen:

1. Storage is allocated for the object XE "object" . If this fails, rather than return null XE "null" , an OutOfMemoryException XE "OutOfMemoryException" is thrown. Thus, tedious checks for null references are unnecessary.

2. The raw data is statically initialized using the values provided in the class XE "class" definition. The pointer to the vtbl is assigned. This ensures that constructors are passed fully formed objects. This operation is equivalent to doing a memcpy() of a static XE "static" version of the object XE "object" onto the newly allocated one, although more advanced compilers may be able to optimize much of this away.

3. If there is a constructor XE "constructor" defined for the class XE "class" , the constructor matching the argument list is called.

4. If class XE "class" invariant XE "invariant" checking is turned on, the class invariant is called at the end of the constructor XE "constructor" .

Destructors

The garbage collector calls the destructor function XE "function" when the object XE "object" is deleted. The syntax is:

class XE "class" Foo

{

~this()

// destructor for Foo

{

}

}

There can be only one destructor per class XE "class" , the destructor does not have any parameters, and has no attributes. It is always virtual.

The destructor is expected to release any resources held by the object XE "object" .

The program can explicitly inform the garbage collector that an object XE "object" is no longer referred to (with the delete XE "delete" expression), and then the garbage collector calls the destructor immediately, and adds the object's memory to the free storage. The destructor is guaranteed to never be called twice.

The destructor for the super XE "super" class XE "class" automatically gets called when the destructor ends. There is no way to call the super destructor explicitly.

Static Constructors

A static XE "static" constructor XE "constructor" is defined as a function XE "function" that performs initializations before the main() function gets control. Static constructors are used to initialize static class XE "class" members XE "members" with values that cannot be computed at compile time.

Static constructors in other languages are built implicitly by using member initializers that can't be computed at compile time. The trouble with this stems from not having good control over exactly when the code is executed, for example:

class XE "class" Foo

{

 static XE "static" int a = b + 1;

 static XE "static" int b = a * 2;

}

What values do a and b end up with, what order are the initializations executed in, what are the values of a and b before the initializations are run, is this a compile error, or is this a runtime error? Additional confusion comes from it not being obvious if an initializer is static XE "static" or dynamic.

D makes this simple. All member initializations must be determinable by the compiler XE "compiler" at compile time, hence there is no order-of-evaluation dependency for member initializations, and it is not possible to read a value that has not been initialized. Dynamic initialization is performed by a static XE "static" constructor XE "constructor" , defined with a special syntax static this().

class XE "class" Foo

{

 static XE "static" int a;

// default XE "default" initialized to 0

 static XE "static" int b = 1;

 static XE "static" int c = b + a;
// error, not a constant initializer

 static XE "static" this()

// static constructor XE "constructor"

 {

a = b + 1;

// a is set to 2

b = a * 2;

// b is set to 4

 }

}

static XE "static" this() is called by the startup code before main() is called. If it returns normally (does not throw XE "throw" an exception), the static destructor is added to the list of function XE "function" to be called on program termination. Static constructors have empty parameter lists.

A current weakness of the static XE "static" constructors is that the order in which they are called is not defined. Hence, for the time being, write the static constructors to be order independent. This problem needs to be addressed in future versions.

Static Destructor

A static XE "static" destructor is defined as a special static function XE "function" with the syntax static ~this().

class XE "class" Foo

{

 static XE "static" ~this()

// static destructor

 {

 }

}

A static XE "static" constructor XE "constructor" gets called on program termination, but only if the static constructor completed successfully. Static destructors have empty parameter lists. Static destructors get called in the reverse order that the static constructors were called in.

Class Invariants

Class invariants are used to specify characteristics of a class XE "class" that always must be true (except while executing a member function XE "function"). For example, a class representing a date XE "date" might have an invariant XE "invariant" that the day must be 1..31 and the hour must be 0..23:

 class XE "class" Date

 {

int day;

int hour;

invariant XE "invariant" ()

{

 assert XE "assert" (1 <= day && day <= 31);

 assert XE "assert" (0 <= hour && hour < 24);

}

 }

The class XE "class" invariant XE "invariant" is a contract saying that the asserts must hold true. The invariant is checked when a class constructor XE "constructor" completes, at the start of the class destructor, before a public XE "public" or exported member is run, and after a public or exported function XE "function" finishes. The invariant can be checked when a class object XE "object" is the argument to an assert XE "assert" () expression, as:

Date mydate;

...

assert XE "assert" (mydate);

// check that class XE "class" Date invariant XE "invariant" holds

If the invariant XE "invariant" fails, it throws an InvariantException. Class invariants are inherited, that is, any class XE "class" invariant is implicitly anded with the invariants of its base classes.

There can be only one invariant XE "invariant" () function XE "function" per class XE "class" .

When compiling for release, the invariant XE "invariant" code is not generated, and the compiled program runs at maximum speed.

Unit Tests XE "Unit Tests"
Unit tests are a series of test cases applied to a class XE "class" to determine if it is working properly. Ideally, unit tests should be run every time a program is compiled. The best way to make sure that unit tests do get run, and that they are maintained along with the class code is to put the test code right in with the class implementation code.

D classes can have a special member function XE "function" called:

unittest

{

 ...test code...

}

The test() functions for all the classes in the program get called after static XE "static" initialization is done and before the main function XE "function" is called. A compiler XE "compiler" or linker switch XE "switch" will remove the test code from the final XE "final" build.

For example, given a class XE "class" Sum that is used to add two values:

class XE "class" Sum

{

 int add(int x, int y) { return x + y; }

 unittest

 {

assert XE "assert" (add(3,4) == 7);

assert XE "assert" (add(-2,0) == -2);

 }

}

There can be only one unittest function XE "function" per class XE "class" .

Class Allocators XE "Allocators"
A class XE "class" member function XE "function" of the form:

new(uint XE "uint" size XE "size")

{

 ...

}

is called a class XE "class" allocator. The class allocator can have any number of parameters, provided the first one is of type uint XE "uint" . Any number can be defined for a class, the correct one is determined by the usual function XE "function" overloading XE "function overloading" rules. When a new expression:

new Foo;

is executed, and Foo is a class XE "class" that has an allocator, the allocator is called with the first argument set to the size XE "size" in bytes of the memory to be allocated for the instance. The allocator must allocate the memory and return it as a void XE "void" *. If the allocator fails, it must not return a null XE "null" , but must throw XE "throw" an exception. If there is more than one parameter to the allocator, the additional arguments are specified within parentheses after the new in the NewExpression:

class XE "class" Foo

{

 this(char XE "char" [] a) { ... }

 new(uint XE "uint" size XE "size" , int x, int y)

 {

...

 }

}

...

new(1,2) Foo(a);
// calls new(Foo.size XE "size" ,1,2)

Derived classes inherit any allocator from their base class XE "class" , if one is not specified.

See also Explicit Class Instance Allocation.

Class Deallocators XE "Deallocators"
A class XE "class" member function XE "function" of the form:

delete XE "delete" (void XE "void" *p)

{

 ...

}

is called a class XE "class" deallocator. The deallocator must have exactly one parameter of type void XE "void" *. Only one can be specified for a class. When a delete XE "delete" expression:

delete XE "delete" f;

is executed, and f is a reference to a class XE "class" instance that has a deallocator, the deallocator is called with a pointer to the class instance after the destructor (if any) for the class is called. It is the responsibility of the deallocator to free the memory.

Derived classes inherit any deallocator from their base class XE "class" , if one is not specified.

See also Explicit Class Instance Allocation.

Auto Classes

An auto XE "auto" class XE "class" is a class with the auto attribute, as in:

auto XE "auto" class XE "class" Foo { ... }

The auto XE "auto" characteristic is inherited, so if any classes derived from an auto class XE "class" are also auto.

An auto XE "auto" class XE "class" reference can only appear as a function XE "function" local variable. It must be declared as being auto:

auto XE "auto" class XE "class" Foo { ... }

void XE "void" func()

{

 Foo f;
// error, reference to auto XE "auto" class XE "class" must be auto

 auto XE "auto" Foo g = new Foo();
// correct

}

When an auto XE "auto" class XE "class" reference goes out of scope, the destructor (if any) for it is automatically called. This holds true even if the scope was exited via a thrown exception.

Interfaces

InterfaceDeclaration:

interface XE "interface" Identifier InterfaceBody

interface XE "interface" Identifier : SuperInterfaces InterfaceBody

SuperInterfaces

Identifier

Identifier , SuperInterfaces

InterfaceBody:

{ DeclDefs }
Interfaces describe a list of functions that a class XE "class" that inherits from the interface XE "interface" must implement. A class that implements an interface can be converted to a reference to that interface. Interfaces correspond to the interface exposed by operating system XE "system" objects, like COM/OLE/ActiveX for Win32 XE "Win32" .

Interfaces cannot derive from classes; only from other interfaces. Classes cannot derive from an interface XE "interface" multiple times.

interface XE "interface" D

{

 void XE "void" foo();

}

class XE "class" A : D, D
// error, duplicate interface XE "interface"

{

}

An instance of an interface XE "interface" cannot be created.

interface XE "interface" D

{

 void XE "void" foo();

}

...

D d = new D();

// error, cannot create instance of interface XE "interface"
Interface member functions XE "member functions" do not have implementations.

interface XE "interface" D

{

 void XE "void" bar() { }
// error, implementation not allowed

}

All interface XE "interface" functions must be defined in a class XE "class" that inherits from that interface:

interface XE "interface" D

{

 void XE "void" foo();

}

class XE "class" A : D

{

 void XE "void" foo() { }
// ok, provides implementation

}

class XE "class" B : D

{

 int foo() { }
// error, no void XE "void" foo() implementation

}

Interfaces can be inherited and functions overridden:

interface XE "interface" D

{

 int foo();

}

class XE "class" A : D

{

 int foo() { return 1; }

}

class XE "class" B : A

{

 int foo() { return 2; }

}

...

B b = new B();

b.foo();

// returns 2

D d = (D) b;

// ok since B inherits A's D implementation

d.foo();

// returns 2;

Interfaces can be reimplemented in derived classes:

interface XE "interface" D

{

 int foo();

}

class XE "class" A : D

{

 int foo() { return 1; }

}

class XE "class" B : A, D

{

 int foo() { return 2; }

}

...

B b = new B();

b.foo();

// returns 2

D d = (D) b;

d.foo();

// returns 2

A a = (A) b;

D d2 = (D) a;

d2.foo();

// returns 2, even though it is A's D, not B's D

A reimplemented interface XE "interface" must implement all the interface functions, it does not inherit them from a super XE "super" class XE "class" :

interface XE "interface" D

{

 int foo();

}

class XE "class" A : D

{

 int foo() { return 1; }

}

class XE "class" B : A, D

{

}

// error, no foo() for interface XE "interface" D

Functions

Virtual Functions XE "Virtual Functions"
All non-static XE "static" member functions XE "member functions" are virtual. This may sound inefficient, but since the D compiler XE "compiler" knows all of the class XE "class" heirarchy when generating code, all functions that are not overridden can be optimized to be non-virtual. In fact, since C++ programmers tend to "when in doubt, make it virtual", the D way of "make it virtual unless we can prove it can be made non-virtual" results on average much more direct function XE "function" calls. It also results in fewer bugs XE "bugs" caused by not declaring a function virtual that gets overridden.

Functions with non-D linkage cannot be virtual, and hence cannot be overridden.

Covariant return types are supported, which means that the overriding function XE "function" in a derived class XE "class" can return a type that is derived from the type returned by the overridden function:

class XE "class" A { }

class XE "class" B : A { }

class XE "class" Foo

{

 A test() { return null XE "null" ; }

}

class XE "class" Bar : Foo

{

 B test() { return null XE "null" ; }
// overrides and is covariant with Foo.test()

}

Inline Functions XE "Inline Functions"
There is no inline keyword. The compiler XE "compiler" makes the decision whether to inline a function XE "function" or not, analogously to the register keyword no longer being relevant to a compiler's decisions on enregistering variables. (There is no register keyword either.)

Function Overloading XE "Function Overloading"
In C++, there are many complex XE "complex" levels of function XE "function" overloading XE "function overloading" , with some defined as "better" matches than others. If the code designer takes advantage of the more subtle behaviors of overload function selection, the code can become difficult to maintain. Not only will it take a C++ expert to understand why one function is selected over another, but different C++ compilers can implement this tricky feature differently, producing subtly disastrous results.

In D, function XE "function" overloading XE "function overloading" is simple. It matches exactly, it matches with implicit conversions, or it does not match. If there is more than one match, it is an error.

Functions defined with non-D linkage cannot be overloaded.

Function Parameters

Parameters are in, out, or inout XE "inout" . in is the default XE "default" ; out and inout work like storage classes. For example:

int foo(int x, out int y, inout XE "inout" int z, int q);

x is in, y is out, z is inout XE "inout" , and q is in.

out is rare enough, and inout XE "inout" even rarer, to attach the keywords to them and leave in as the default XE "default" . The reasons to have them are:

· The function XE "function" declaration makes it clear what the inputs and outputs to the function are.

· It eliminates the need for IDL as a separate language.

· It provides more information to the compiler XE "compiler" , enabling more error checking and possibly better code generation.

· It (perhaps?) eliminates the need for reference (&) declarations.

out parameters are set to the default XE "default" initializer for the type of it. For example:

void XE "void" foo(out int bar)

{

}

int bar = 3;

foo(bar);

// bar is now 0

Local Variables XE "Variables"
It is an error to use a local variable without first assigning it a value. The implementation may not always be able to detect these cases. Other language compilers sometimes issue a warning for this, but since it is always a bug, it should be an error.

It is an error to declare a local variable that is never referred to. Dead variables, like anachronistic dead code, is just a source of confusion for maintenance programmers.

It is an error to declare a local variable that hides another local variable in the same function XE "function" :

void XE "void" func(int x)

{ int x;

error, hides previous definition of x

 double XE "double" y;

 ...

 { char XE "char" y;
error, hides previous definition of y

 int z;

 }

 { wchar XE "wchar" z;
legal, previous z is out of scope

 }

}

While this might look unreasonable, in practice whenever this is done it either is a bug or at least looks like a bug.

It is an error to return the address of or a reference to a local variable.

It is an error to have a local variable and a label with the same name.

Nested Functions XE "Nested Functions"
Functions may be nested within other functions:

int bar(int a)

{

 int foo(int b)

 {

int abc() { return 1; }

return b + abc();

 }

 return foo(a);

}

void XE "void" test()

{

 int i = bar(3);
// i is assigned 4

}

Nested functions can only be accessed by the most nested lexically enclosing function XE "function" , or by another nested function at the same nesting depth:

int bar(int a)

{

 int foo(int b) { return b + 1; }

 int abc(int b) { return foo(b); }
// ok

 return foo(a);

}

void XE "void" test()

{

 int i = bar(3);
// ok

 int j = bar.foo(3);
// error, bar.foo not visible

}

Nested functions have access to the variables and other symbols defined by the lexically enclosing function XE "function" . This access includes both the ability to read and write them.

int bar(int a)

{ int c = 3;

 int foo(int b)

 {

b += c;

// 4 is added to b

c++;

// bar.c is now 5

return b + c;
// 12 is returned

 }

 c = 4;

 int i = foo(a);
// i is set to 12

 return i + c;
// returns 17

}

void XE "void" test()

{

 int i = bar(3);
// i is assigned 17

}

This access can span multiple nesting levels:

int bar(int a)

{ int c = 3;

 int foo(int b)

 {

int abc()

{

 return c;
// access bar.c

}

return b + c + abc();

 }

 return foo(3);

}

Static nested functions cannot access any stack variables of any lexically enclosing function XE "function" , but can access static XE "static" variables. This is analogous to how static member functions XE "member functions" behave.

int bar(int a)

{ int c;

 static XE "static" int d;

 static XE "static" int foo(int b)

 {

b = d;

// ok

b = c;

// error, foo() cannot access frame of bar()

return b + 1;

 }

 return foo(a);

}

Functions can be nested within member functions XE "member functions" :

struct XE "struct" Foo

{ int a;

 int bar()

 {
int c;

int foo()

{

 return c + a;

}

 }

}

Member functions of nested classes and structs do not have access to the stack variables of the enclosing function XE "function" , but do have access to the other symbols:

void XE "void" test()

{ int j;

 static XE "static" int s;

 struct XE "struct" Foo

 { int a;

int bar()

{ int c = s;

// ok, s is static XE "static"

 int d = j;

// error, no access to frame of test()

 int foo()

 {

int e = s;
// ok, s is static XE "static"

int f = j;
// error, no access to frame of test()

return c + a;
// ok, frame of bar() is accessible,

// so are members XE "members" of Foo accessible via

// the 'this' pointer to Foo.bar()

 }

}

 }

}

Delegates, Function Pointers XE "Pointers" , and Dynamic Closures XE "Dynamic Closures"
A function XE "function" pointer can point to a static XE "static" nested function:

int function XE "function" () fp;

void XE "void" test()

{ static XE "static" int a = 7;

 static XE "static" int foo() { return a + 3; }

 fp = foo;

}

void XE "void" bar()

{

 test();

 int i = fp();
// i is set to 10

}

A delegate XE "delegate" can be set to a non-static XE "static" nested function XE "function" :

int delegate XE "delegate" () dg;

void XE "void" test()

{ int a = 7;

 int foo() { return a + 3; }

 dg = foo;

 int i = dg();
// i is set to 10

}

The stack variables, however, are not valid once the function XE "function" declaring them has exited, in the same manner that pointers to stack variables are not valid upon exit from a function:

int* bar()

{ int b;

 test();

 int i = dg();
// error, test.a no longer exists

 return &b;

// error, bar.b not valid after bar() exits

}

Delegates to non-static XE "static" nested functions contain two pieces of data: the pointer to the stack frame of the lexically enclosing function XE "function" (called the frame pointer) and the address of the function. This is analogous to struct XE "struct" /class XE "class" non-static member function delegates XE "delegates" consisting of a this pointer and the address of the member function. Both forms of delegates are interchangeable, and are actually the same type:

struct XE "struct" Foo

{ int a = 7;

 int bar() { return a; }

}

int foo(int delegate XE "delegate" () dg)

{

 return dg() + 1;

}

void XE "void" test()

{

 int x = 27;

 int abc() { return x; }

 Foo f;

 int i;

 i = foo(abc);
// i is set to 28

 i = foo(f.bar);
// i is set to 8

}

This combining of the environment and the function XE "function" is called a dynamic closure.

Operator Overloading XE "Operator Overloading"
Overloading is accomplished by interpreting specially named member functions XE "member functions" as being implementations of unary and binary operators. No additional syntax is used.

Unary XE "Unary" Operator Overloading XE "Operator Overloading"
Overloadable Unary XE "Unary" Operators

	op
	opfunc

	-
	neg

	~
	com

	e++
	postinc

	e--
	postdec

Given a unary overloadable operator op and its corresponding class XE "class" or struct XE "struct" member function XE "function" name opfunc, the syntax:

op a

where a is a class XE "class" or struct XE "struct" object XE "object" reference, is interpreted as if it was written as:

a.opfunc()

Overloading ++e and --e
Since ++e is defined to be semantically equivalent to (e += 1), the expression ++e is rewritten as (e += 1), and then checking for operator overloading is done. The situation is analogous for --e.

Examples

1.
class XE "class" A { int neg(); }

2.
A a;

3.
-a;
// equivalent to a.neg();

4.
class XE "class" A { int neg(int i); }

5.
A a;

6.
-a;
// equivalent to a.neg(), which is an error

Binary Operator Overloading XE "Operator Overloading"
Overloadable Binary Operators

	op
	commutative?
	opfunc
	opfunc_r

	+
	yes
	add
	-

	-
	no
	sub
	sub_r

	*
	yes
	mul
	-

	/
	no
	div
	div_r

	%
	no
	mod
	mod_r

	&
	yes
	and
	-

	|
	yes
	or
	-

	^
	yes
	xor
	-

	<<
	no
	shl
	shl_r

	>>
	no
	shr
	shr_r

	>>>
	no
	ushr
	ushr_r

	~
	no
	cat
	cat_r

	==
	yes
	eq
	-

	!=
	yes
	eq
	-

	<
	yes
	cmp
	-

	<=
	yes
	cmp
	-

	>
	yes
	cmp
	-

	>=
	yes
	cmp
	-

	+=
	no
	addass
	-

	-=
	no
	subass
	-

	*=
	no
	mulass
	-

	/=
	no
	divass
	-

	%=
	no
	modass
	-

	&=
	no
	andass
	-

	|=
	no
	orass
	-

	^=
	no
	xorass
	-

	<<=
	no
	shlass
	-

	>>=
	no
	shrass
	-

	>>>=
	no
	ushrass
	-

	~=
	no
	catass
	-

Given a binary overloadable operator op and its corresponding class XE "class" or struct XE "struct" member function XE "function" name opfunc and opfunc_r, the syntax:

a op b

is interpreted as if it was written as:

a.opfunc(b)

or:

b.opfunc_r(a)

The following sequence of rules is applied, in order, to determine which form is used:

1. If a is a struct XE "struct" or class XE "class" object XE "object" reference that contains a member named opfunc, the expression is rewritten as:

2.
a.opfunc(b)

3. If b is a struct XE "struct" or class XE "class" object XE "object" reference that contains a member named opfunc_r and the operator op is not commutative, the expression is rewritten as:

4.
b.opfunc_r(a)

5. If b is a struct XE "struct" or class XE "class" object XE "object" reference that contains a member named opfunc and the operator op is commutative, the expression is rewritten as:

6.
b.opfunc(a)

7. If a or b is a struct XE "struct" or class XE "class" object XE "object" reference, it is an error.

Examples

1.
class XE "class" A { int add(int i); }

2.
A a;

3.
a + 1;
// equivalent to a.add(1)

4.
1 + a;
// equivalent to a.add(1)

5.
class XE "class" B { int div_r(int i); }

6.
B b;

7.
1 / b;
// equivalent to b.div_r(1)

Overloading == and !=

Both operators use the eq() function XE "function" . The expression (a == b) is rewritten as a.eq(b), and (a != b) is rewritten as !a.eq(b).

The member function XE "function" eq() is defined as part of Object as:

int eq(Object o);

so that every class XE "class" object XE "object" has an eq().

If a struct XE "struct" has no eq() function XE "function" declared for it, a bit XE "bit" compare of the contents of the two structs is done to determine equality or inequality.

Overloading <, <=, > and >=

These comparison operators all use the cmp() function XE "function" . The expression (a op b) is rewritten as (a.cmp(b) op 0). The commutative operation is rewritten as (0 op b.cmp(a))

The member function XE "function" cmp() is defined as part of Object as:

int cmp(Object o);

so that every class XE "class" object XE "object" has a cmp().

If a struct XE "struct" has no cmp() function XE "function" declared for it, attempting to compare two structs is an error.

Note: Comparing a reference to a class XE "class" object XE "object" against null XE "null" should be done as:

if (a === null XE "null")

and not as:

if (a == null XE "null")

The latter is converted to:

if (a.cmp(null XE "null"))

which will fail if cmp is a virtual function XE "function" .

Rationale

The reason for having both eq() and cmp() is that:

· Testing for equality can sometimes be a much more efficient operation than testing XE "testing" for less or greater than.

· For some objects, testing XE "testing" for less or greater makes no sense. For these, override XE "override" cmp() with:

·
class XE "class" A

·
{

·
 int cmp(Object o)

·
 {

·

assert XE "assert" (0);
// comparison makes no sense

·

return 0;

·
 }

·
}

Future Directions

Likely many more operators will become overloadable. But the operators ., &&, ||, ?:, and a

Templates XE "Templates"
Templates XE "Templates" are D's approach to generic programming. Templates are defined with a TemplateDeclaration:

TemplateDeclaration:

template TemplateIdentifier (TemplateParameterList)

{ DeclDefs }

TemplateIdentifier:

Identifier

TemplateParameterList

TemplateParameter

TemplateParameter , TemplateParameterList

TemplateParameter:

TypeParameter

ValueParameter

TypeParameter:

Identifier

Identifier : Type

ValueParameter:

Declaration XE "Declaration"

Declaration XE "Declaration" : AssignExpression
The body XE "body" of the TemplateDeclaration must be syntactically correct even if never instantiated. Semantic analysis is not done until instantiated. A template forms its own scope, and the template body can contain classes, structs, types, enums, variables, functions, and other templates.

Template parameters can be either types or values. Value parameters must be of an integral type, and specializations for them must resolve to an integral constant.

Templates XE "Templates" are instantiated with:

TemplateInstance:

instance TemplateIdentifer (TemplateArgumentList)

TemplateAliasDeclaration:

TemplateInstance AliasIdentifier;

AliasIdentifier:

Identifier

TemplateArgumentList:

TemplateArgument

TemplateArgument , TemplateArgumentList

TemplateArgument:

Type

AssignExpression
Once instantiated, the declarations inside the template, called the template members XE "members" , are in the scope of the AliasIdentifier:

template TFoo(T) { alias XE "alias" T* t; }

instance TFoo(int) abc;

...

abc.t x;
// declare x to be of type int

Template members XE "members" can also be accessed directly from the TemplateInstance:

template TFoo(T) { alias XE "alias" T* t; }

instance TFoo(int).t x;
// declare x to be of type int

Multiple instantiations of a TemplateDeclaration with the same TemplateParameterList all will refer to the same instantiation. For example:

template TFoo(T) { T f; }

instance TFoo(int) a;

instance TFoo(int) b;

...

a.f = 3;

assert XE "assert" (b.f == 3);
// a and b refer to the same instance of TFoo

This is true even if the TemplateInstances are done in different modules.

If multiple templates with the same TemplateIdentifier are declared, they are distinct if they have a different number of arguments or are differently specialized.

For example, a simple generic copy template would be:

template TCopy(T)

{

 void XE "void" copy(out T to, T from)

 {

to = from;

 }

}

To use the template, it must first be instantiated with a specific type:

instance TCopy(int) copyint;

And then the instance can be called:

int i;

copyint.copy(i, 3);

Instantiation XE "Instantiation" Scope

TemplateInstantances are always performed in the scope of where the TemplateDeclaration is declared, with the addition of the template parameters being declared as aliases for their deduced types.

For example:

-------- module a ---------

template TFoo(T) { void XE "void" bar() { func(); } }

-------- module b ---------

import XE "import" a;

void XE "void" func() { }

instance TFoo(int) f;
// error: func not defined in module a

and:

-------- module a ---------

template TFoo(T) { void XE "void" bar() { func(1); } }

void XE "void" func(double XE "double" d) { }

-------- module b ---------

import XE "import" a;

void XE "void" func(int i) { }

instance TFoo(int) f;

...

f.bar();
// will call a.func(double XE "double")

Argument Deduction XE "Deduction"
The types of template parameters are deduced for a particular template instantiation by comparing the template argument with the corresponding template parameter.

For each template parameter, the following rules are applied in order until a type is deduced for each parameter:

1. If there is no type specialization for the parameter, the type of the parameter is set to the template argument.

2. If the type specialization is dependent on a type parameter, the type of that parameter is set to be the corresponding part of the type argument.

3. If after all the type arguments are examined there are any type parameters left with no type assigned, they are assigned types corresponding to the template argument in the same position in the TemplateArgumentList.

4. If applying the above rules does not result in exactly one type for each template parameter, then it is an error.

For example:

template TFoo(T) { }

instance TFoo(int) Foo1;
// (1) T is deduced to be int

instance TFoo(char XE "char" *) Foo2;
// (1) T is deduced to be char*

template TFoo(T : T*) { }

instance TFoo(char XE "char" *) Foo3;
// (2) T is deduced to be char

template TBar(D, U : D[]) { }

instance TBar(int, int[]) Bar1;
 // (2) D is deduced to be int, U is int[]

instance TBar(char XE "char" , int[]) Bar2; // (4) error, D is both char and int

template TBar(D : E XE "E" *, E) { }

instance TBar(int*, int);
// (1) E XE "E" is int

// (3) D is int*

When considering matches, a class XE "class" is considered to be a match for any super XE "super" classes or interfaces:

class XE "class" A { }

class XE "class" B : A { }

template TFoo(T : A) { }

instance TFoo(B);

// (3) T is B

template TBar(T : U*, U : A) { }

instance TBar(B*, B);

// (2) T is B*

// (3) U is B

Value Parameters

This example of template foo has a value parameter that is specialized for 10:

template foo(U : int, int T : 10)

{

 U x = T;

}

void XE "void" main()

{

 assert XE "assert" (instance foo(int, 10).x == 10);

}

Specialization XE "Specialization"
Templates XE "Templates" may be specialized for particular types of arguments by following the template parameter identifier with a : and the specialized type. For example:

template TFoo(T) { ... } // #1

template TFoo(T : T[]) { ... } // #2

template TFoo(T : char XE "char") { ... } // #3

template TFoo(T,U,V) { ... } // #4

instance TFoo(int) foo1;
 // instantiates #1

instance TFoo(double XE "double" []) foo2; // instantiates #2 with T being double

instance TFoo(char XE "char") foo3; // instantiates #3

instance TFoo(char XE "char" , int) fooe; // error, number of arguments mismatch

instance TFoo(char XE "char" , int, int) foo4; // instantiates #4

The template picked to instantiate is the one that is most specialized that fits the types of the TemplateArgumentList. Determine which is more specialized is done the same way as the C++ partial ordering rules. If the result is ambiguous, it is an error.

Limitations

Templates XE "Templates" cannot be used to add non-static XE "static" members XE "static members" or functions to classes. For example:

class XE "class" Foo

{

 template TBar(T)

 {

T xx;

// Error

int func(T) { ... }
// Error

static XE "static" T yy;

// Ok

static XE "static" int func(T t, int y) { ... }
// Ok

 }

}

Templates XE "Templates" cannot be declared inside functions.

Contracts XE "Contracts"
Contracts XE "Contracts" are a breakthrough technique to reduce the programming effort for large projects. Contracts are the concept of preconditions, postconditions, errors, and invariants. Contracts can be done in C++ without modification to the language, but the result is clumsy and inconsistent.

Building contract support into the language makes for:

1. a consistent look and feel for the contracts

2. tool support

3. it's possible the compiler XE "compiler" can generate better code using information gathered from the contracts

4. easier management and enforcement of contracts

5. handling of contract inheritance

[image: image1]The idea of a contract is simple - it's just an expression that must evaluate to true. If it does not, the contract is broken, and by definition, the program has a bug in it. Contracts XE "Contracts" form part of the specification for a program, moving it from the documentation to the code itself. And as every programmer knows, documentation tends to be incomplete, out of date XE "date" , wrong, or non-existent. Moving the contracts into the code makes them verifiable against the program.

Assert Contract

The most basic contract is the assert
. An assert inserts a checkable expression into the code, and that expression must evaluate to true:

assert XE "assert" (expression);

C programmers will find it familiar. Unlike C, however, an assert XE "assert" in function XE "function" bodies works by throwing an AssertException, which can be caught and handled. Catching the contract violation is useful when the code must deal with errant uses by other code, when it must be failure proof, and as a useful tool for debugging.

Pre and Post Contracts XE "Contracts"
The pre contracts specify the preconditions before a statement is executed. The most typical use of this would be in validating the parameters to a function XE "function" . The post contracts validate the result of the statement. The most typical use of this would be in validating the return value of a function and of any side effects it has. The syntax is:

in

{

 ...contract preconditions...

}

out (result)

{

 ...contract postconditions...

}

body XE "body"

{

 ...code...

}

By definition, if a pre contract fails, then the body XE "body" received bad parameters. An InException is thrown. If a post contract fails, then there is a bug in the body. An OutException is thrown.

Either the in or the out clause can be omitted. If the out clause is for a function XE "function" body XE "body" , the variable result is declared and assigned the return value of the function. For example, let's implement a square root function:

long square_root(long x)

 in

 {

assert XE "assert" (x >= 0);

 }

 out (result)

 {

assert XE "assert" ((result * result) == x);

 }

 body XE "body"

 {

return math XE "math" .sqrt(x);

 }

The assert XE "assert" 's in the in and out bodies are called contracts. Any other D statement or expression is allowed in the bodies, but it is important to ensure that the code has no side effects, and that the release version of the code will not depend on any effects of the code. For a release build of the code, the in and out code is not inserted.

If the function XE "function" returns a void XE "void" , there is no result, and so there can be no result declaration in the out clause. In that case XE "case" , use:

void XE "void" func()

 out

 {

...contracts...

 }

 body XE "body"

 {

...

 }

In an out statement, result is initialized and set to the return value of the function XE "function" .

The compiler XE "compiler" can be adjusted to verify that every in and inout XE "inout" parameter is referenced in the in { }, and every out and inout parameter is referenced in the out { }.

The in-out statement can also be used inside a function XE "function" , for example, it can be used to check the results of a loop:

in

{

 assert XE "assert" (j == 0);

}

out

{

 assert XE "assert" (j == 10);

}

body XE "body"

{

 for (i = 0; i < 10; i++)

j++;

}

This is not implemented at this time.

In, Out and Inheritance XE "Inheritance"
If a function XE "function" in a derived class XE "class" overrides a function in its super XE "super" class, then only one of the in contracts of the base functions must be satisified Overriding functions then becomes a process XE "process" of loosening the in contracts.

Conversely, all of the out contracts needs to be satisified, so overriding functions becomes a processes of tightening the out contracts.

Class Invariants

Class invariants are used to specify characteristics of a class XE "class" that always must be true (except while executing a member function XE "function"). They are described in Classes.

Debug and Version XE "Version"
D supports building multiple versions and various debug XE "debug" builds from the same source code using the features:

DebugSpecification

DebugAttribute

DebugStatement

VersionSpecification

VersionAttribute

VersionStatement
Predefined Versions

Several environmental version identifiers and identifier name spaces are predefined to encourage consistent usage. Version XE "Version" identifiers do not conflict with other identifiers in the code, they are in a separate name space.

DigitalMars XE "DigitalMars"

Digital Mars is the compiler XE "compiler" vendor

X86 XE "X86"

Intel and AMD 32 bit XE "bit" processors

Win32 XE "Win32"

Microsoft 32 bit XE "bit" Windows systems

linux XE "linux"

All linux XE "linux" systems

LittleEndian XE "LittleEndian"

Byte order, least significant first

BigEndian XE "BigEndian"

Byte order, most significant first

D_InlineAsm

Inline assembler is implemented

none XE "none"

Never defined; used to just disable a section of code

Others will be added as they make sense and new implementations appear.

It is inevitable that the D language will evolve over time. Therefore, the version identifier namespace beginning with "D_" is reserved for identifiers indicating D language specification or new feature conformance.

Compiler vendor specific versions can be predefined if the trademarked vendor identifier prefixes it, as in:

version(DigitalMars XE "DigitalMars" _funky_extension)

{

 ...

}

It is important to use the right version identifier for the right purpose. For example, use the vendor identifier when using a vendor specific feature. Use the operating system XE "system" identifier when using an operating system specific feature, etc.

Specification

DebugSpecification

 debug XE "debug" = Identifier ;

 debug XE "debug" = Integer ;

VersionSpecification

 version = Identifier ;

 version = Integer ;
Version XE "Version" specifications do not declare any symbols, but instead set a version in the same manner that the -version does on the command line. The version specification is used for conditional compilation with version attributes and version statements.

The version specification makes it straightforward to group a set of features under one major version, for example:

version (ProfessionalEdition)

{

 version = FeatureA;

 version = FeatureB;

 version = FeatureC;

}

version (HomeEdition)

{

 version = FeatureA;

}

...

version (FeatureB)

{

 ... implement Feature B ...

}

Debug Statement

Two versions of programs are commonly built, a release build and a debug XE "debug" build. The debug build commonly includes extra error checking code, test harnesses, pretty-printing code, etc. The debug statement conditionally compiles in its statement body XE "body" . It is D's way of what in C is done with #ifdef DEBUG / #endif pairs.

DebugStatement:

debug XE "debug" Statement

debug XE "debug" (Integer) Statement

debug XE "debug" (Identifier) Statement
Debug statements are compiled in when the -debug XE "debug" switch XE "switch" is thrown on the compiler XE "compiler" .

debug XE "debug" (Integer) statements are compiled in when the debug level n set by the -debug(n) switch XE "switch" is <= Integer.

debug XE "debug" (Identifier) statements are compiled in when the debug identifier set by the -debug(identifer) matches Identifier.

If Statement is a block statement, it does not introduce a new scope. For example:

int k;

debug XE "debug"

{ int i;

 int k;
// error, k already defined

 i = 3;

}

x = i;

// uses the i declared above

There is no else clause for a debug XE "debug" statement, as debug statements should add code, not subtract code.

Version XE "Version" Statement

It is commonplace to conveniently support multiple versions of a module with a single source file XE "source file" . While the D way is to isolate all versioning into separate modules, that can get burdensome if it's just simple line change, or if the entire program would otherwise fit into one module.

VersionStatement:

VersionPredicate Statement

VersionPredicate Statement else Statement

VersionPredicate

version (Integer)

version (Identifier)
The version statement conditionally compiles in its statement body XE "body" based on the version specified by the Integer of Identifier. Both forms are set by the -version switch XE "switch" to the compiler XE "compiler" . If Statement is a block statement, it does not introduce a new scope. For example:

int k;

version (Demo)
// compile in this code block for the demo version

{ int i;

 int k;
// error, k already defined

 i = 3;

}

x = i;

// uses the i declared above

The version statement works together with the version attribute for declarations.

Version XE "Version" statements can nest.

The optional else clause gets conditionally compiled in if the version predicate is false XE "false" :

version (X86 XE "X86")

{

 ... // implement custom inline assembler version

}

else

{

 ... // use default XE "default" , but slow, version

}

While the debug XE "debug" and version statements superficially behave the same, they are intended for very different purposes. Debug statements are for adding debug code that is removed for the release version. Version XE "Version" statements are to aid in portability and multiple release versions.

Debug Attribute

DebugAttribute:

 debug XE "debug"

 debug XE "debug" (Integer)

 debug XE "debug" (Identifier)
Two versions of programs are commonly built, a release build and a debug XE "debug" build. The debug build includes extra error checking code, test harnesses, pretty-printing code, etc. The debug attribute conditionally compiles in code:

class XE "class" Foo

{

int a, b;

 debug XE "debug" :

int flag;

}

Conditional Compilation means that if the code is not compiled in, it still must be syntactically correct, but no semantic checking or processing is done on it. No symbols are defined, no typechecking is done, no code is generated, no imports are imported. Various different debug XE "debug" builds can be built with a parameter to debug:

debug XE "debug" (n) { }
// add in debug code if debug level is <= n

debug XE "debug" (identifier) { } // add in debug code if debug keyword is identifier
These are presumably set by the command line as -debug XE "debug" =n and -debug=identifier.

Version XE "Version" Attribute

VersionAttribute:

 version (Integer)

 version (Identifier)
The version attribute is very similar to the debug XE "debug" attribute, and in many ways is functionally interchangable with it. The purpose of it, however, is different. While debug is for building debugging versions of a program, version is for using the same source to build multiple release versions.

For instance, there may be a full version as opposed to a demo version:

class XE "class" Foo

{

 int a, b;

 version(full)

 {

int extrafunctionality()

{

 ...

 return 1;

// extra functionality is supported

}

 }

 else // demo

 {

int extrafunctionality()

{

 return 0;

// extra functionality is not supported

}

 }

}

Various different version builds can be built with a parameter to version:

version(n) { }
// add in version code if version level is >= n

version(identifier) { } // add in version code if version keyword is identifier
These are presumably set by the command line as -version=n and -version=identifier.

Error Handling XE "Error Handling" in D

All programs have to deal with errors. Errors are unexpected conditions that are not part of the normal operation of a program. Examples of common errors are:

· Out of memory.

· Out of disk space.

· Invalid file XE "file" name.

· Attempting to write to a read-only file XE "file" .

· Attempting to read a non-existent file XE "file" .

· Requesting a system XE "system" service that is not supported.

The Error Handling XE "Error Handling" Problem

The traditional C way of detecting and reporting errors is not traditional, it is ad-hoc and varies from function XE "function" to function, including:

· Returning a NULL pointer.

· Returning a 0 value.

· Returning a non-zero error code.

· Requiring errno to be checked.

· Requiring that a function XE "function" be called to check if the previous function failed.

To deal with these possible errors, tedious error handling code must be added to each function XE "function" call. If an error happened, code must be written to recover from the error, and the error must be reported to the user in some user friendly fashion. If an error cannot be handled locally, it must be explicitly propagated back to its caller. The long list of errno values needs to be converted into appropriate text to be displayed. Adding all the code to do this can consume a large part of the time spent coding a project - and still, if a new errno value is added to the runtime system XE "system" , the old code can not properly display a meaningful error message.

Good error handling code tends to clutter up what otherwise would be a neat and clean looking implementation.

Even worse, good error handling code is itself error prone, tends to be the least tested (and therefore buggy) part of the project, and is frequently simply omitted. The end result is likely a "blue screen of death" as the program failed to deal with some unanticipated error.

Quick and dirty programs are not worth writing tedious error handling code for, and so such utilities tend to be like using a table saw with no blade guards.

What's needed is an error handling philosophy and methodology that is:

· Standardized - consistent usage makes it more useful.

· Produces a reasonable result even if the programmer fails to check for errors.

· Allows old code to be reused with new code without having to modify the old code to be compatible with new error types.

· No errors get inadvertently ignored.

· Allows 'quick and dirty' utilities to be written that still correctly handle errors.

· Easy to make the error handling source code look good.

The D Error Handling XE "Error Handling" Solution

Let's first make some observations and assumptions about errors:

· Errors are not part of the normal flow of a program. Errors are exceptional, unusual, and unexpected.

· Because errors are unusual, execution of error handling code is not performance critical.

· The normal flow of program logic is performance critical.

· All errors must be dealt with in some way, either by code explicitly written to handle them, or by some system XE "system" default XE "default" handling.

· The code that detects an error knows more about the error than the code that must recover from the error.

The solution is to use exception handling to report errors. All errors are objects derived from abstract XE "abstract" class XE "class" Error. class Error has a pure virtual function XE "function" called toString() which produces a char XE "char" [] with a human readable description of the error.

If code detects an error like "out of memory XE "out of memory" ," then an Error is thrown with a message saying "Out of memory". The function XE "function" call stack is unwound, looking for a handler for the Error. Finally blocks are executed as the stack is unwound. If an error handler is found, execution resumes there. If not, the default XE "default" Error handler is run, which displays the message and terminates the program.

How does this meet our criteria?

Standardized - consistent usage makes it more useful.

This is the D way, and is used consistently in the D runtime library XE "library" and examples.

Produces a reasonable result even if the programmer fails to check for errors.

If no catch XE "catch" handlers are there for the errors, then the program gracefully exits through the default XE "default" error handler with an appropriate message.

Allows old code to be reused with new code without having to modify the old code to be compatible with new error types.

Old code can decide to catch XE "catch" all errors, or only specific ones, propagating the rest upwards. In any case XE "case" , there is no more need to correlate error numbers with messages, the correct message is always supplied.

No errors get inadvertently ignored.

Error exceptions get handled one way or another. There is nothing like a NULL pointer return indicating an error, followed by trying to use that NULL pointer.

Allows 'quick and dirty' utilities to be written that still correctly handle errors.

Quick and dirty code need not write any error handling code at all, and don't need to check for errors. The errors will be caught, an appropriate message displayed, and the program gracefully shut down all by default XE "default" .

Easy to make the error handling source code look good.

The try/catch XE "catch" /finally XE "finally" statements look a lot nicer than endless if (error) goto XE "goto" errorhandler; statements.

How does this meet our assumptions about errors?

Errors are not part of the normal flow of a program. Errors are exceptional, unusual, and unexpected.

D exception handling fits right in with that.

Because errors are unusual, execution of error handling code is not performance critical.

Exception handling stack unwinding is a relatively slow process XE "process" .

The normal flow of program logic is performance critical.

Since the normal flow code does not have to check every function XE "function" call for error returns, it can be realistically faster to use exception handling for the errors.

All errors must be dealt with in some way, either by code explicitly written to handle them, or by some system XE "system" default XE "default" handling.

If there's no handler for a particular error, it is handled by the runtime library XE "library" default XE "default" handler. If an error is ignored, it is because the programmer specifically added code to ignore an error, which presumably means it was intentional.

The code that detects an error knows more about the error than the code that must recover from the error.

There is no more need to translate error codes into human readable strings, the correct string XE "string" is generated by the error detection code, not the error recovery code. This also leads to consistent error messages for the same error between applications.

Garbage Collection XE "Garbage Collection"
D is a fully garbage collected language. That means that it is never necessary to free memory. Just allocate as needed, and the garbage collector will periodically return all unused memory to the pool of available memory.

C and C++ programmers accustomed to explicitly managing memory allocation XE "memory allocation" and deallocation XE "deallocation" will likely be skeptical of the benefits and efficacy of garbage collection. Experience both with new projects written with garbage collection in mind, and converting existing projects to garbage collection shows that:

· Garbage collected programs are faster. This is counterintuitive, but the reasons are:

· Reference counting is a common solution to solve explicit memory allocation XE "memory allocation" problems. The code to implement the increment and decrement operations whenever assignments are made is one source of slowdown. Hiding it behind smart pointer classes doesn't help the speed. (Reference counting methods are not a general solution anyway, as circular references never get deleted.)

· Destructors are used to deallocate resources acquired by an object XE "object" . For most classes, this resource is allocated memory. With garbage collection, most destructors then become empty and can be discarded entirely.

· All those destructors freeing memory can become significant when objects are allocated on the stack. For each one, some mechanism must be established so that if an exception happens, the destructors all get called in each frame to release any memory they hold. If the destructors become irrelevant, then there's no need to set up special stack frames to handle exceptions, and the code runs faster.

· All the code necessary to manage memory can add up to quite a bit XE "bit" . The larger a program is, the less in the cache it is, the more paging it does, and the slower it runs.

· Garbage collection kicks in only when memory gets tight. When memory is not tight, the program runs at full speed and does not spend any time freeing memory.

· Modern garbage collecters are far more advanced now than the older, slower ones. Generational, copying collectors eliminate much of the inefficiency of early mark and sweep algorithms.

· Modern garbage collectors do heap compaction. Heap compaction tends to reduce the number of pages actively referenced by a program, which means that memory accesses are more likely to be cache hits and less swapping.

· Garbage collected programs do not suffer from gradual deterioration due to an accumulation of memory leaks.

· Garbage collectors reclaim unused memory, therefore they do not suffer from "memory leaks" which can cause long running applications to gradually consume more and more memory until they bring down the system XE "system" . GC'd programs have longer term stability.

· Garbage collected programs have fewer hard-to-find pointer bugs XE "bugs" . This is because there are no dangling references to free'd memory. There is no code to explicitly manage memory, hence no bugs in such code.

· Garbage collected programs are faster to develop and debug XE "debug" , because there's no need for developing, debugging, testing XE "testing" , or maintaining the explicit deallocation XE "deallocation" code.

· Garbage collected programs can be significantly smaller, because there is no code to manage deallocation XE "deallocation" , and there is no need for exception handlers to deallocate memory.

Garbage collection is not a panacea. There are some downsides:

· It is not predictable when a collection gets run, so the program can arbitrarilly pause.

· The time it takes for a collection to run is not bounded. While in practice it is very quick, this cannot be guaranteed.

· All threads other than the collector thread XE "thread" must be halted while the collection is in progress.

· Garbage collectors can keep around some memory that an explicit deallocator would not. In practice, this is not much of an issue since explicit deallocators usually have memory leaks causing them to eventually use far more memory, and because explicit deallocators do not normally return deallocated memory to the operating system XE "system" anyway, instead just returning it to its own internal pool.

· Garbage collection should be implemented as a basic operating system XE "system" kernel service. But since they are not, garbage collecting programs must carry around with them the garbage collection implementation. While this can be a shared DLL XE "DLL" , it is still there.

These constraints are addressed by techniques outlined in Memory Management.

How Garbage Collection XE "Garbage Collection" Works

To be written...

Interfacing Garbage Collected Objects With Foreign Code

The garbage collector looks for roots in its static XE "static" data segment, and the stacks and register contents of each thread XE "thread" . If the only root of an object XE "object" is held outside of this, then the collecter will miss it and free the memory.

To avoid this from happening,

· Maintain a root to the object XE "object" in an area the collector does scan for roots.

· Reallocate the object XE "object" using the foreign code's storage allocator or using the C runtime library XE "library" 's malloc/free.

Pointers XE "Pointers" and the Garbage Collector

The garbage collector's algorithms depend on pointers being pointers and not pointers being not pointers. To that end, the following practices that are not unusual in C should be carefully avoided in D:

· Do not hide pointers by xor'ing them with other values, like the xor'd pointer linked list trick used in C. Do not use the xor trick to swap two pointer values.

· Do not store pointers into int variables using casts and other tricks. The garbage collector does not scan non-pointer types for roots.

· Do not take advantage of alignment of pointers to store bit XE "bit" flags in the low order bits, do not store bit flags in the high order bits.

· Do not store integer values into pointers.

· Do not store magic values into pointers, other than null XE "null" .

· If you must share the same storage location between pointers and non-pointer types, use a union XE "union" to do it so the garbage collector knows about it.

In fact, avoid using pointers at all as much as possible. D provides features rendering most explicit pointer uses obsolete, such as reference objects, dynamic arrays XE "arrays" , and garbage collection. Pointers XE "Pointers" are provided in order to interface XE "interface" successfully with C API XE "C API" 's and for some wizard level work.

Working with the Garbage Collector

Garbage collection doesn't solve every memory deallocation XE "deallocation" problem. For example, if a root to a large data structure is kept, the garbage collector cannot reclaim it, even if it is never referred to again. To eliminate this problem, it is good practice to set a reference or pointer to an object XE "object" to null XE "null" when no longer needed.

This advice applies only to static XE "static" references or references embedded inside other objects. There is not much point for such stored on the stack to be nulled, since the collector doesn't scan for roots past the top of the stack, and because new stack frames are initialized anyway.

Memory Management

Any non-trivial program needs to allocate and free memory. Memory management techniques become more and more important as programs increase in complexity, size XE "size" , and performance. D offers many options for managing memory.

The three primary methods for allocating memory in D are:

1. Static data, allocated in the default XE "default" data segment.

2. Stack data, allocated on the CPU program stack.

3. Garbage collected data, allocated dynamically on the garbage collection heap.

This chapter describes techniques for using them, as well as some advanced alternatives:

· Strings (and Array) Copy-on-Write

· Real Time

· Smooth Operation

· Free Lists

· Reference Counting

· Explicit Class Instance Allocation

· Mark/Release

· RAII" RAII (Resource Acquisition Is Initialization XE "Initialization")

· Allocating Class Instances On The Stack

Strings XE "Strings" (and Array) Copy-on-Write

Consider the case XE "case" of passing an array to a function XE "function" , possibly modifying the contents of the array, and returning the modified array. Since arrays XE "arrays" are passed by reference, not by value, a crucial issue is who owns the contents of the array? For example, a function to convert an array of characters to upper case:

char XE "char" [] toupper(char[] s)

{

 int i;

 for (i = 0; i < s.length; i++)

 {

char XE "char" c = s[i];

if ('a' <= c && c <= 'z')

 s[i] = c - (cast XE "cast" (char XE "char")'a' - 'A');

 }

 return s;

}

Note that the caller's version of s[] is also modified. This may be not at all what was intended, or worse, s[] may be a slice into a read-only section of memory.

If a copy of s[] was always made by toupper(), then that will unnecessarilly consume time and memory for strings that are already all upper case XE "case" .

The solution is to implement copy-on-write, which means that a copy is made only if the string XE "string" needs to be modified. Some string processing languages do do this as the default XE "default" behavior, but there is a huge cost to it. The string "abcdeF" will wind up being copied 5 times by the function XE "function" . To get the maximum efficiency using the protocol, it'll have to be done explicitly in the code. Here's toupper() rewritten to implement copy-on-write in an efficient manner:

char XE "char" [] toupper(char[] s)

{

 int changed;

 int i;

 changed = 0;

 for (i = 0; i < s.length; i++)

 {

char XE "char" c = s[i];

if ('a' <= c && c <= 'z')

{

 if (!changed)

 { char XE "char" [] r = new char[s.length];

r[] = s;

s = r;

changed = 1;

 }

 s[i] = c - (cast XE "cast" (char XE "char")'a' - 'A');

}

 }

 return s;

}

Copy-on-write is the protocol implemented by array processing functions in the D Phobos XE "Phobos" runtime library XE "library" .

Real Time XE "Real Time"
Real time programming means that a program must be able to guarantee a maximum latency, or time to complete an operation. With most memory allocation XE "memory allocation" schemes, including malloc/free and garbage collection, the latency is theoretically not bound. The most reliable way to guarantee latency is to preallocate all data that will be needed by the time critical portion. If no calls to allocate memory are done, the gc XE "gc" will not run and so will not cause the maximum latency to be exceeded.

Smooth Operation

Related to real time programming is the need for a program to operate smoothly, without arbitrary pauses while the garbage collector stops everything to run a collection. An example of such a program would be an interactive shooter type game. Having the game play pause erratically, while not fatal to the program, can be annoying to the user. There are several techniques to eliminate or mitigate the effect:

 Preallocate all data needed before the part of the code that needs to be smooth is run.

 Manually run a gc XE "gc" collection cycle at points in program execution where it is already paused. An example of such a place would be where the program has just displayed a prompt for user input and the user has not responded yet. This reduces the odds that a collection cycle will be needed during the smooth code.

 Call gc XE "gc" .disable() before the smooth code is run, and gc.enable() afterwards. This will cause the gc to favor allocating more memory instead of running a collection pass.

Free Lists

Free lists are a great way to accelerate access to a frequently allocated and discarded type. The idea is simple - instead of deallocating an object XE "object" when done with it, put it on a free list. When allocating, pull one off the free list first.

class XE "class" Foo

{

 static XE "static" Foo freelist;

// start of free list

 static XE "static" Foo allocate()

 {
Foo f;

if (freelist)

{ f = freelist;

 freelist = f.next;

}

else

 f = new Foo();

return f;

 }

 static XE "static" void XE "void" deallocate(Foo f)

 {

f.next = freelist;

freelist = f;

 }

 Foo next;

// for use by FooFreeList

 ...

}

void XE "void" test()

{

 Foo f = Foo.allocate();

 ...

 Foo.deallocate(f);

}

Such free list approaches can be very high performance.

· If used by multiple threads, the allocate() and deallocate() functions need to be synchronized XE "synchronized" .

· The Foo constructor XE "constructor" is not re-run by allocate() when allocating from the free list, so the allocator may need to reinitialize some of the members XE "members" .

· It is not necessary to practice RIAA with this, since if any objects are not passed to deallocate() when done, because of a thrown exception, they'll eventually get picked up by the gc XE "gc" anyway.

Reference Counting XE "Reference Counting"
The idea behind reference counting is to include a count field in the object XE "object" . Increment it for each additional reference to it, and decrement it whenever a reference to it ceases. When the count hits 0, the object can be deleted.

D doesn't provide any automated support for reference counting, it will have to be done explicitly.

Win32" Win32 COM programming
 uses the members XE "members" AddRef() and Release() to maintain the reference counts.

Explicit Class Instance Allocation

D provides a means of creating custom allocators and deallocators for class XE "class" instances. Normally, these would be allocated on the garbage collected heap, and deallocated when the collector decides to run. For specialized purposes, this can be handled by creating NewDeclarations and DeleteDeclarations. For example, to allocate using the C runtime library XE "library" 's malloc and free:

import XE "import" c.stdlib;

import XE "import" outofmemory;

import XE "import" gc XE "gc" ;

class XE "class" Foo

{

 new(uint XE "uint" sz)

 {

void XE "void" * p;

p = c.stdlib.malloc(sz);

if (!p)

 throw XE "throw" new OutOfMemory();

gc XE "gc" .addRange(p, p + sz);

return p;

 }

 delete XE "delete" (void XE "void" * p)

 {

if (p)

{ gc XE "gc" .removeRange(p);

 c.stdlib.free(p);

}

 }

}

The critical features of new() are:

· new() does not have a return type specified, but it is defined to be void XE "void" *. new() must return a void*.

· If new() cannot allocate memory, it must not return null XE "null" , but must throw XE "throw" an exception.

· The pointer returned from new() must be to memory aligned to the default XE "default" alignment. This is 8 on win32 systems.

· The size XE "size" parameter is needed in case XE "case" the allocator is called from a class XE "class" derived from Foo and is a larger size than Foo.

· A null XE "null" is not returned if storage cannot be allocated. Instead, an exception is thrown. Which exception gets thrown is up to the programmer, in this case XE "case" , OutOfMemory() is.

· When scanning memory for root pointers into the garbage collected heap, the static XE "static" data segment and the stack are scanned automatically. The C heap is not. Therefore, if Foo or any class XE "class" derived from Foo using the allocator contains any references to data allocated by the garbage collector, the gc XE "gc" needs to be notified. This is done with the gc.addRange() method.

· No initialization of the memory is necessary, as code is automatically inserted after the call to new() to set the class XE "class" instance members XE "members" to their defaults and then the constructor XE "constructor" (if any) is run.

The critical features of delete XE "delete" () are:

· The destructor (if any) has already been called on the argument p, so the data it points to should be assumed to be garbage.

· The pointer p may be null XE "null" .

· If the gc XE "gc" was notified with gc.addRange(), a corresponding call to gc.removeRange() must happen in the deallocator.

· If there is a delete XE "delete" (), there should be a corresponding new().

If memory is allocated using class XE "class" specific allocators and deallocators, careful coding practices must be followed to avoid memory leaks and dangling references. In the presence of exceptions, it is particularly important to practice RAII XE "RAII" to prevent memory leaks.

Mark/Release

Mark/Release is equivalent to a stack method of allocating and freeing memory. A 'stack' is created in memory. Objects are allocated by simply moving a pointer down the stack. Various points are 'marked', and then whole sections of memory are released simply by resetting the stack pointer back to a marked point.

import XE "import" c.stdlib;

import XE "import" outofmemory;

class XE "class" Foo

{

 static XE "static" void XE "void" [] buffer;

 static XE "static" int bufindex;

 static XE "static" const XE "const" int bufsize = 100;

 static XE "static" this()

 {
void XE "void" *p;

p = malloc(bufsize);

if (!p)

 throw XE "throw" new OutOfMemory;

gc XE "gc" .addRange(p, p + bufsize);

buffer = p[0 .. bufsize];

 }

 static XE "static" ~this()

 {

if (buffer.length)

{

 gc XE "gc" .removeRange(buffer);

 free(buffer);

 buffer = null XE "null" ;

}

 }

 new(uint XE "uint" sz)

 { void XE "void" *p;

p = &buffer[bufindex];

bufindex += sz;

if (bufindex > buffer.length)

 throw XE "throw" new OutOfMemory;

return p;

 }

 delete XE "delete" (void XE "void" * p)

 {

assert XE "assert" (0);

 }

 static XE "static" int mark()

 {

return bufindex;

 }

 static XE "static" void XE "void" release(int i)

 {

bufindex = i;

 }

}

void XE "void" test()

{

 int m = Foo.mark();

 Foo f1 = new Foo;

// allocate

 Foo f2 = new Foo;

// allocate

 ...

 Foo.release(m);

// deallocate f1 and f2

}

 The allocation of buffer[] itself is added as a region to the gc XE "gc" , so there is no need for a separate call inside Foo.new() to do it.

RAII XE "RAII" (Resource Acquisition Is Initialization XE "Initialization")

RAII XE "RAII" techniques can be useful in avoiding memory leaks when using explicit allocators and deallocators. Adding the auto" auto attribute
 to such classes can help.

Allocating Class Instances On The Stack

Allocating class XE "class" instances on the stack is useful for temporary objects that are to be automatically deallocated when the function XE "function" is exited. No special handling is needed to account for function termination via stack unwinding from an exception. To work, they must not have destructors.

import XE "import" c.stdlib;

class XE "class" Foo

{

 new(uint XE "uint" sz, void XE "void" *p)

 {

return p;

 }

 delete XE "delete" (void XE "void" * p)

 {

assert XE "assert" (0);

 }

}

void XE "void" test()

{

 Foo f = new(c.stdlib.alloca(Foo.classinfo.init.length)) Foo;

 ...

}

· There is no need to check for a failure of alloca() and throw XE "throw" an exception, since by definition alloca() will generate a stack overflow exception if it overflows.

· There is no need for a call to gc XE "gc" .addRange() or gc.removeRange() since the gc automatically scans the stack anyway.

· The dummy delete XE "delete" () function XE "function" is to ensure that no attempts are made to delete a stack based object XE "object" .

Floating Point XE "Floating Point"
Floating Point XE "Floating Point" Intermediate Values

On many computers, greater precision operations do not take any longer than lesser precision operations, so it makes numerical sense to use the greatest precision available for internal temporaries. The philosophy is not to dumb down the language to the lowest common hardware denominator, but to enable the exploitation of the best capabilities of target hardware.

For floating point operations and expression intermediate values, a greater precision can be used than the type of the expression. Only the minimum precision is set by the types of the operands, not the maximum. Implementation Note: On Intel x86 machines, for example, it is expected (but not required) that the intermediate calculations be done to the full 80 bits of precision implemented by the hardware.

It's possible that, due to greater use of temporaries and common subexpressions, optimized code may produce a more accurate answer than unoptimized code.

Algorithms should be written to work based on the minimum precision of the calculation. They should not degrade or fail if the actual precision is greater. Float or double XE "double" types, as opposed to the extended type, should only be used for:

· reducing memory consumption for large arrays XE "arrays"

· data and function XE "function" argument compatibility with C

Complex and Imaginary XE "Imaginary" types

In existing languages, there is an astonishing amount of effort expended in trying to jam a complex XE "complex" type onto existing type definition facilities: templates, structs, operator overloading, etc., and it all usually ultimately fails. It fails because the semantics of complex operations can be subtle, and it fails because the compiler XE "compiler" doesn't know what the programmer is trying to do, and so cannot optimize the semantic implementation.

This is all done to avoid adding a new type. Adding a new type means that the compiler XE "compiler" can make all the semantics of complex XE "complex" work "right". The programmer then can rely on a correct (or at least fixable) implementation of complex.

Coming with the baggage of a complex XE "complex" type is the need for an imaginary type. An imaginary type eliminates some subtle semantic issues, and improves performance by not having to perform extra operations on the implied 0 real part.

Imaginary XE "Imaginary" literals have an i suffix:

imaginary j = 1.3i;

There is no particular complex XE "complex" literal XE "literal" syntax, just add a real and imaginary type:

complex XE "complex" c = 4.5 + 2i;

Adding two new types to the language is enough, hence complex XE "complex" and imaginary have extended precision. There is no complex float XE "float" or complex double XE "double" type, and no imaginary float or imaginary double. [NOTE: the door is open to adding them in the future, but I doubt there's a need]

Complex numbers have two properties:

.re
get real part as an extended

.im
get imaginary part as an imaginary

For example:

c.re

is 4.5

c.im

is 2i

Rounding XE "Rounding" Control

IEEE 754 XE "IEEE 754" floating point arithmetic includes the ability to set 4 different rounding modes. D adds syntax to access them: [blah, blah, blah] [NOTE: this is perhaps better done with a standard library XE "library" call]

Exception Flags

IEEE 754 XE "IEEE 754" floating point arithmetic can set several flags based on what happened with a computation: [blah, blah, blah]. These flags can be set/reset with the syntax: [blah, blah, blah] [NOTE: this is perhaps better done with a standard library XE "library" call]

Floating Point XE "Floating Point" Comparisons

In addition to the usual < <= > >= == != comparison operators, D adds more that are specific to floating point. These are [blah, blah, blah] and match the semantics for the NCEG extensions to C.

[insert table here]

D x86 Inline Assembler XE "Assembler"
[image: image5.png]

http://www.digitalmars.com/gift/index.htmlD, being a systems programming language, provides an inline assembler. The inline assembler is standardized for D implementations across the same CPU family, for example, the Intel Pentium inline assembler for a Win32 XE "Win32" D compiler XE "compiler" will be syntax compatible with the inline assembler for Linux running on an Intel Pentium.

Differing D implementations, however, are free to innovate upon the memory model, function XE "function" call/return conventions, argument passing conventions, etc.

This document describes the x86 implementation of the inline assembler.

AsmInstruction:

Identifier : AsmInstruction

align XE "align" IntegerExpression

even

naked

db Operands

ds Operands

di Operands

dl Operands

df Operands

dd Operands

de Operands

Opcode

Opcode Operands

Operands

Operand

Operand , Operands
Labels

Assembler XE "Assembler" instructions can be labeled just like other statements. They can be the target of goto XE "goto" statements. For example:

void XE "void" *pc;

asm XE "asm"

{

 call L1

;

 L1:

;

 pop
EBX

;

 mov
pc[EBP],EBX
;
// pc now points to code at L1

}

align XE "align" IntegerExpression
Causes the assembler to emit NOP instructions to align XE "align" the next assembler instruction on an IntegerExpression boundary. IntegerExpression must evaluate to an integer that is a power of 2.

Aligning the start of a loop body XE "body" can sometimes have a dramatic effect on the execution speed.

even

Causes the assembler to emit NOP instructions to align XE "align" the next assembler instruction on an even boundary.

naked

Causes the compiler XE "compiler" to not generate the function XE "function" prolog and epilog sequences. This means such is the responsibility of inline assembly programmer, and is normally used when the entire function is to be written in assembler.

db, ds, di, dl, df, dd, de

These pseudo ops are for inserting raw data directly into the code. db is for bytes, ds is for 16 bit XE "bit" words, di is for 32 bit words, dl is for 64 bit words, df is for 32 bit floats, dd is for 64 bit doubles, and de is for 80 bit extended reals. Each can have multiple operands. If an operand is a string XE "string" literal XE "literal" , it is as if there were length operands, where length is the number of characters in the string. One character is used per operand. For example:

asm XE "asm"

{

 db 5,6,0x83; // insert bytes 0x05, 0x06, and 0x83 into code

 ds 0x1234; // insert bytes 0x34, 0x12

 di 0x1234; // insert bytes 0x34, 0x12, 0x00, 0x00

 dl 0x1234; // insert bytes 0x34, 0x12, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

 df 1.234; // insert float XE "float" 1.234

 dd 1.234; // insert double XE "double" 1.234

 de 1.234; // insert extended 1.234

 db "abc"; // insert bytes 0x61, 0x62, and 0x63

 ds "abc"; // insert bytes 0x61, 0x00, 0x62, 0x00, 0x63, 0x00

}

Opcodes

A list of supported opcodes is at the end.

The following registers are supported. Register names are always in upper case XE "case" .

AL, AH, AX, EAX

BL, BH, BX, EBX

CL, CH, CX, ECX

DL, DH, DX, EDX

BP, EBP

SP, ESP

DI, EDI

SI, ESI

ES, CS, SS, DS, GS, FS

CR0, CR2, CR3, CR4

DR0, DR1, DR2, DR3, DR6, DR7

TR3, TR4, TR5, TR6, TR7

ST

ST(0), ST(1), ST(2), ST(3), ST(4), ST(5), ST(6), ST(7)

MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7

Special Cases

lock, rep, repe, repne, repnz, repz

These prefix instructions do not appear in the same statement as the instructions they prefix; they appear in their own statement. For example:

asm XE "asm"

{

 rep ;

 movsb ;

}

pause

This opcode is not supported by the assembler, instead use

{

 rep ;

 nop ;

}

which produces the same result.

floating point ops

Use the two operand form of the instruction format;

fdiv ST(1);
// wrong

fmul ST; // wrong

fdiv ST,ST(1);
// right

fmul ST,ST(0);
// right

Operands

Operand:

 AsmExp

AsmExp:

 AsmLogOrExp

 AsmLogOrExp ? AsmExp : AsmExp

AsmLogOrExp:

 AsmLogAndExp

 AsmLogAndExp || AsmLogAndExp

AsmLogAndExp:

 AsmOrExp

 AsmOrExp && AsmOrExp

AsmOrExp:

 AsmXorExp

 AsmXorExp | AsmXorExp

AsmXorExp:

 AsmAndExp

 AsmAndExp ^ AsmAndExp

AsmAndExp:

 AsmEqualExp

 AsmEqualExp & AsmEqualExp

AsmEqualExp:

 AsmRelExp

 AsmRelExp == AsmRelExp

 AsmRelExp != AsmRelExp

AsmRelExp:

 AsmShiftExp

 AsmShiftExp < AsmShiftExp

 AsmShiftExp <= AsmShiftExp

 AsmShiftExp > AsmShiftExp

 AsmShiftExp >= AsmShiftExp

AsmShiftExp:

 AsmAddExp

 AsmAddExp << AsmAddExp

 AsmAddExp >> AsmAddExp

 AsmAddExp >>> AsmAddExp

AsmAddExp:

 AsmMulExp

 AsmMulExp + AsmMulExp

 AsmMulExp - AsmMulExp

AsmMulExp:

 AsmBrExp

 AsmBrExp * AsmBrExp

 AsmBrExp / AsmBrExp

 AsmBrExp % AsmBrExp

AsmBrExp:

 AsmUnaExp

 AsmBrExp [AsmExp]

AsmUnaExp:

 AsmTypePrefix AsmExp

 offset AsmExp

 seg AsmExp

 + AsmUnaExp

 - AsmUnaExp

 ! AsmUnaExp

 ~ AsmUnaExp

 AsmPrimaryExp

AsmPrimaryExp

 IntegerConstant

 FloatConstant

 __LOCAL_SIZE

 $

 Register

 DotIdentifier

DotIdentifier

 Identifier

 Identifier . DotIdentifier
The operand syntax more or less follows the Intel CPU documentation conventions. In particular, the convention is that for two operand instructions the source is the right operand and the destination is the left operand. The syntax differs from that of Intel's in order to be compatible with the D language tokenizer and to simplify parsing.

Operand Types

AsmTypePrefix:

near ptr

far ptr

byte XE "byte" ptr

short ptr

int ptr

word ptr

dword ptr

float XE "float" ptr

double XE "double" ptr

extended ptr
In cases where the operand size XE "size" is ambiguous, as in:

add
[EAX],3

;

it can be disambiguated by using an AsmTypePrefix:

add
byte XE "byte" ptr [EAX],3
;

add
int ptr [EAX],7

;

Struct/Union/Class Member Offsets

To access members XE "members" of an aggregate, given a pointer to the aggregate is in a register, use the qualified name of the member:

struct XE "struct" Foo { int a,b,c; }

int bar(Foo *f)

{

 asm XE "asm"

 {
mov
EBX,f

;

mov
EAX,Foo.b[EBX]
;

 }

}

Special Symbols

$

Represents the program counter of the start of the next instruction. So,

jmp
$;

branches to the instruction following the jmp instruction.

__LOCAL_SIZE

This gets replaced by the number of local bytes in the local stack frame. It is most handy when the naked is invoked and a custom stack frame is programmed.

Opcodes Supported

	aaa
	aad
	aam
	aas
	adc

	add
	addpd
	addps
	addsd
	addss

	and
	andnpd
	andnps
	andpd
	andps

	arpl
	bound
	bsf
	bsr
	bswap

	bt
	btc
	btr
	bts
	call

	cbw
	cdq
	clc
	cld
	clflush

	cli
	clts
	cmc
	cmova
	cmovae

	cmovb
	cmovbe
	cmovc
	cmove
	cmovg

	cmovge
	cmovl
	cmovle
	cmovna
	cmovnae

	cmovnb
	cmovnbe
	cmovnc
	cmovne
	cmovng

	cmovnge
	cmovnl
	cmovnle
	cmovno
	cmovnp

	cmovns
	cmovnz
	cmovo
	cmovp
	cmovpe

	cmovpo
	cmovs
	cmovz
	cmp
	cmppd

	cmpps
	cmps
	cmpsb
	cmpsd
	cmpss

	cmpsw
	cmpxch8b
	cmpxchg
	comisd
	comiss

	cpuid
	cvtdq2pd
	cvtdq2ps
	cvtpd2dq
	cvtpd2pi

	cvtpd2ps
	cvtpi2pd
	cvtpi2ps
	cvtps2dq
	cvtps2pd

	cvtps2pi
	cvtsd2si
	cvtsd2ss
	cvtsi2sd
	cvtsi2ss

	cvtss2sd
	cvtss2si
	cvttpd2dq
	cvttpd2pi
	cvttps2dq

	cvttps2pi
	cvttsd2si
	cvttss2si
	cwd
	cwde

	da
	daa
	das
	db
	dd

	de
	dec
	df
	di
	div

	divpd
	divps
	divsd
	divss
	dl

	dq
	ds
	dt
	dw
	emms

	enter
	f2xm1
	fabs
	fadd
	faddp

	fbld
	fbstp
	fchs
	fclex
	fcmovb

	fcmovbe
	fcmove
	fcmovnb
	fcmovnbe
	fcmovne

	fcmovnu
	fcmovu
	fcom
	fcomi
	fcomip

	fcomp
	fcompp
	fcos
	fdecstp
	fdiv

	fdivp
	fdivr
	fdivrp
	ffree
	fiadd

	ficom
	ficomp
	fidiv
	fidivr
	fild

	fimul
	fincstp
	finit
	fist
	fistp

	fisub
	fisubr
	fld
	fld1
	fldcw

	fldenv
	fldl2e
	fldl2t
	fldlg2
	fldln2

	fldpi
	fldz
	fmul
	fmulp
	fnclex

	fninit
	fnop
	fnsave
	fnstcw
	fnstenv

	fnstsw
	fpatan
	fprem
	fprem1
	fptan

	frndint
	frstor
	fsave
	fscale
	fsetpm

	fsin
	fsincos
	fsqrt
	fst
	fstcw

	fstenv
	fstp
	fstsw
	fsub
	fsubp

	fsubr
	fsubrp
	ftst
	fucom
	fucomi

	fucomip
	fucomp
	fucompp
	fwait
	fxam

	fxch
	fxrstor
	fxsave
	fxtract
	fyl2x

	fyl2xp1
	hlt
	idiv
	imul
	in

	inc
	ins
	insb
	insd
	insw

	int
	into
	invd
	invlpg
	iret

	iretd
	ja
	jae
	jb
	jbe

	jc
	jcxz
	je
	jecxz
	jg

	jge
	jl
	jle
	jmp
	jna

	jnae
	jnb
	jnbe
	jnc
	jne

	jng
	jnge
	jnl
	jnle
	jno

	jnp
	jns
	jnz
	jo
	jp

	jpe
	jpo
	js
	jz
	lahf

	lar
	ldmxcsr
	lds
	lea
	leave

	les
	lfence
	lfs
	lgdt
	lgs

	lidt
	lldt
	lmsw
	lock
	lods

	lodsb
	lodsd
	lodsw
	loop
	loope

	loopne
	loopnz
	loopz
	lsl
	lss

	ltr
	maskmovdqu
	maskmovq
	maxpd
	maxps

	maxsd
	maxss
	mfence
	minpd
	minps

	minsd
	minss
	mov
	movapd
	movaps

	movd
	movdq2q
	movdqa
	movdqu
	movhlps

	movhpd
	movhps
	movlhps
	movlpd
	movlps

	movmskpd
	movmskps
	movntdq
	movnti
	movntpd

	movntps
	movntq
	movq
	movq2dq
	movs

	movsb
	movsd
	movss
	movsw
	movsx

	movupd
	movups
	movzx
	mul
	mulpd

	mulps
	mulsd
	mulss
	neg
	nop

	not
	or
	orpd
	orps
	out

	outs
	outsb
	outsd
	outsw
	packssdw

	packsswb
	packuswb
	paddb
	paddd
	paddq

	paddsb
	paddsw
	paddusb
	paddusw
	paddw

	pand
	pandn
	pavgb
	pavgw
	pcmpeqb

	pcmpeqd
	pcmpeqw
	pcmpgtb
	pcmpgtd
	pcmpgtw

	pextrw
	pinsrw
	pmaddwd
	pmaxsw
	pmaxub

	pminsw
	pminub
	pmovmskb
	pmulhuw
	pmulhw

	pmullw
	pmuludq
	pop
	popa
	popad

	popf
	popfd
	por
	prefetchnta
	prefetcht0

	prefetcht1
	prefetcht2
	psadbw
	pshufd
	pshufhw

	pshuflw
	pshufw
	pslld
	pslldq
	psllq

	psllw
	psrad
	psraw
	psrld
	psrldq

	psrlq
	psrlw
	psubb
	psubd
	psubq

	psubsb
	psubsw
	psubusb
	psubusw
	psubw

	punpckhbw
	punpckhdq
	punpckhqdq
	punpckhwd
	punpcklbw

	punpckldq
	punpcklqdq
	punpcklwd
	push
	pusha

	pushad
	pushf
	pushfd
	pxor
	rcl

	rcpps
	rcpss
	rcr
	rdmsr
	rdpmc

	rdtsc
	rep
	repe
	repne
	repnz

	repz
	ret
	retf
	rol
	ror

	rsm
	rsqrtps
	rsqrtss
	sahf
	sal

	sar
	sbb
	scas
	scasb
	scasd

	scasw
	seta
	setae
	setb
	setbe

	setc
	sete
	setg
	setge
	setl

	setle
	setna
	setnae
	setnb
	setnbe

	setnc
	setne
	setng
	setnge
	setnl

	setnle
	setno
	setnp
	setns
	setnz

	seto
	setp
	setpe
	setpo
	sets

	setz
	sfence
	sgdt
	shl
	shld

	shr
	shrd
	shufpd
	shufps
	sidt

	sldt
	smsw
	sqrtpd
	sqrtps
	sqrtsd

	sqrtss
	stc
	std
	sti
	stmxcsr

	stos
	stosb
	stosd
	stosw
	str

	sub
	subpd
	subps
	subsd
	subss

	sysenter
	sysexit
	test
	ucomisd
	ucomiss

	ud2
	unpckhpd
	unpckhps
	unpcklpd
	unpcklps

	verr
	verw
	wait
	wbinvd
	wrmsr

	xadd
	xchg
	xlat
	xlatb
	xor

	xorpd
	xorps
	
	
	

AMD Opcodes Supported

	pavgusb
	pf2id
	pfacc
	pfadd
	pfcmpeq

	pfcmpge
	pfcmpgt
	pfmax
	pfmin
	pfmul

	pfnacc
	pfpnacc
	pfrcp
	pfrcpit1
	pfrcpit2

	pfrsqit1
	pfrsqrt
	pfsub
	pfsubr
	pi2fd

	pmulhrw
	pswapd
	
	
	

Interfacing to C

D is designed to fit comfortably with a C compiler XE "compiler" for the target system XE "system" . D makes up for not having its own VM by relying on the target environment's C runtime library XE "library" . It would be senseless to attempt to port to D or write D wrappers for the vast array of C APIs available. How much easier it is to just call them directly.

This is done by matching the C compiler XE "compiler" 's data types, layouts, and function XE "function" call/return sequences.

Calling C Functions

C functions can be called directly from D. There is no need for wrapper functions, argument swizzling, and the C functions do not need to be put into a separate DLL XE "DLL" .

The C function XE "function" must be declared and given a calling convention, most likely the "C" calling convention, for example:

extern XE "extern" (C) int strcmp(char XE "char" *string1, char *string2);

and then it can be called within D code in the obvious way:

import XE "import" string XE "string" ;

int myDfunction(char XE "char" [] s)

{

 return strcmp(string XE "string" .toCharz(s), "foo\0");

}

There are several things going on here:

· D understands how C function XE "function" names are "mangled" and the correct C function call/return sequence.

· C functions cannot be overloaded with another C function XE "function" with the same name.

· There are no __cdecl, __far, __stdcall, __declspec, or other such C type modifiers in D. These are handled by attributes, such as extern XE "extern" (C).

· There are no const XE "const" or volatile XE "volatile" type modifiers in D. To declare a C function XE "function" that uses those type modifiers, just drop those keywords from the declaration.

· Strings XE "Strings" are not 0 terminated in D. See "Data Type Compatibility XE "Compatibility" " for more information about this.

C code can correspondingly call D functions, if the D functions use an attribute that is compatible with the C compiler XE "compiler" , most likely the extern XE "extern" (C):

// myfunc() can be called from any C function XE "function"

extern XE "extern" (C)

{

 void XE "void" myfunc(int a, int b)

 {

...

 }

}

Storage Allocation

C code explicitly manages memory with calls to malloc() and free(). D allocates memory using the D garbage collector, so no explicit free's are necessary.

D can still explicitly allocate memory using c.stdlib.malloc() and c.stdlib.free(), these are useful for connecting to C functions that expect malloc'd buffers, etc.

If pointers to D garbage collector allocated memory are passed to C functions, it's critical to ensure that that memory will not be collected by the garbage collector before the C function XE "function" is done with it. This is accomplished by:

· Making a copy of the data using c.stdlib.malloc() and passing the copy instead.

· Leaving a pointer to it on the stack (as a parameter or automatic variable), as the garbage collector will scan the stack.

· Leaving a pointer to it in the static XE "static" data segment, as the garbage collector will scan the static data segment.

· Registering the pointer with the garbage collector with the gc XE "gc" .addRoot() or gc.addRange() calls.

An interior pointer to the allocated memory block is sufficient to let the GC know the object XE "object" is in use; i.e. it is not necessary to maintain a pointer to the beginning of the allocated memory.

The garbage collector does not scan the stacks of threads not created by the D Thread interface XE "interface" . Nor does it scan the data segments of other DLL XE "DLL" 's, etc.

Data Type Compatibility XE "Compatibility"
	D type
	C type

	void XE "void"
	void XE "void"

	bit XE "bit"
	no equivalent

	byte XE "byte"
	signed char XE "char"

	ubyte XE "ubyte"
	unsigned char XE "char"

	char XE "char"
	char XE "char" (chars are unsigned in D)

	wchar XE "wchar"
	wchar XE "wchar" _t

	short
	short

	ushort XE "ushort"
	unsigned short

	int
	int

	uint XE "uint"
	unsigned

	long
	long long

	ulong XE "ulong"
	unsigned long long

	float XE "float"
	float XE "float"

	double XE "double"
	double XE "double"

	extended
	long double XE "double"

	imaginary
	long double XE "double" _Imaginary XE "Imaginary"

	complex XE "complex"
	long double XE "double" _Complex

	type*
	type *

	type[dim]
	type[dim]

	type[]
	no equivalent

	type[type]
	no equivalent

	"string XE "string" \0"
	"string XE "string" " or L"string"

	class XE "class"
	no equivalent

	type(*)(parameters)
	type(*)(parameters)

These equivalents hold for most 32 bit XE "bit" C compilers. The C standard does not pin down the sizes of the types, so some care is needed.

Calling printf XE "printf" ()

This mostly means checking that the printf XE "printf" format specifier matches the corresponding D data type. Although printf is designed to handle 0 terminated strings, not D dynamic arrays XE "arrays" of chars, it turns out that since D dynamic arrays are a length followed by a pointer to the data, the %.*s format works perfectly:

void XE "void" foo(char XE "char" [] string XE "string")

{

 printf XE "printf" ("my string XE "string" is: %.*s\n", string);

}

Astute readers will notice that the printf XE "printf" format string XE "string" literal XE "literal" in the example doesn't end with \0. This is because string literals, when they are not part of an initializer to a larger data structure, have a \0 character helpfully stored after the end of them.

Structs and Unions

D structs and unions are analogous to C's.

C code often adjusts the alignment and packing of struct XE "struct" members XE "members" with a command line switch XE "switch" or with various implementation specific #pragma's. D supports explicit alignment attributes that correspond to the C compiler XE "compiler" 's rules. Check what alignment the C code is using, and explicitly set it for the D struct declaration.

D does not support bit XE "bit" fields. If needed, they can be emulated with shift and mask operations.

Interfacing to C++

D does not provide an interface XE "interface" to C++. Since D, however, interfaces directly to C, it can interface directly to C++ code if it is declared as having C linkage.

D class XE "class" objects are incompatible with C++ class objects.

Portability Guide

It's good software engineering practice to minimize gratuitous portability problems in the code. Techniques to minimize potential portability problems are:

· The integral and floating type sizes should be considered as minimums. Algorithms should be designed to continue XE "continue" to work properly if the type size XE "size" increases.

· The wchar XE "wchar" type can be either 2 or 4 bytes wide in current implementations; future implementations can increase the size XE "size" further.

· Floating point computations can be carried out at a higher precision than the size XE "size" of the floating point variable can hold. Floating point algorithms should continue XE "continue" to work properly if precision is arbitrarilly increased.

· Avoid depending on the order of side effects in a computation that may get reordered by the compiler XE "compiler" . For example:

·
a + b + c

can be evaluated as (a + b) + c, a + (b + c), (a + c) + b, (c + b) + a, etc. Parenthesis control operator precedence, parenthesis do not control order of evaluation.

In particular, function XE "function" parameters can be evaluated either left to right or right to left, depending on the particular calling conventions XE "calling conventions" used.

· Avoid dependence on byte XE "byte" order; i.e. whether the CPU is big-endian or little-endian.

· Avoid dependence on the size XE "size" of a pointer or reference being the same size as a particular integral type.

· If size XE "size" dependencies are inevitable, put an assert XE "assert" in the code to verify it:

·
assert XE "assert" (int.size XE "size" == (int*).size);

OS Specific Code

System specific code is handled by isolating the differences into separate modules. At compile time, the correct system XE "system" specific module is imported.

Minor differences can be handled by constant defined in a system XE "system" specific import XE "import" , and then using that constant in an if statement.

Embedding D in HTML XE "HTML"
The D compiler XE "compiler" is designed to be able to extract and compile D code embedded within HTML XE "HTML" files. This capability means that D code can be written to be displayed within a browser utilizing the full formatting and display capability of HTML.

For example, it is possible to make all uses of a class XE "class" name actually be hyperlinks to where the class is defined. There's nothing new to learn for the person browsing the code, he just uses the normal features of an HTML XE "HTML" browser. Strings XE "Strings" can be displayed in green, comments in red, and keywords in boldface, for one possibility. It is even possible to embed pictures in the code, as normal HTML image tags.

Embedding D in HTML XE "HTML" makes it possible to put the documentation for code and the code itself all together in one file XE "file" . It is no longer necessary to relegate documentation in comments, to be extracted later by a tech writer. The code and the documentation for it can be maintained simultaneously, with no duplication of effort.

How it works is straightforward. If the source file XE "source file" to the compiler XE "compiler" ends in .htm or .html, the code is assumed to be embedded in HTML XE "HTML" . The source is then preprocessed by stripping all text outside of <code> and </code> tags. Then, all other HTML tags are stripped, and embedded character encodings are converted to ASCII XE "ASCII" . All newlines in the original HTML remain in their corresponding positions in the preprocessed text, so the debug XE "debug" line numbers remain consistent. The resulting text is then fed to the D compiler.

Here's an example of the D program "hello world" embedded in this very HTML XE "HTML" file XE "file" . This file can be compiled and run.

import XE "import" Object;
import stdio XE "stdio" ;

int main()
{
 printf XE "printf" ("hello world\n");
 return 0;
}
D Runtime Model

Object Model

An object XE "object" consists of:

offset
contents

------ --------

0:
pointer to vtable

4:
monitor

8...
non-static XE "static" members XE "static members"
The vtable consists of:

0:
pointer to instance of ClassLayout

4...
pointers to virtual member functions XE "virtual member functions"
Array Model

A dynamic array consists of:

0:
pointer to array data

4:
array dimension

A dynamic array is declared as:

type array[];

whereas a static XE "static" array is declared as:

type array[dimension];

Thus, a static XE "static" array always has the dimension statically available as part of the type, and

so it is implemented like in C. Static array's and Dynamic arrays XE "arrays" can be easilly converted back

and forth to each other.

Reference Types

D has reference types, but they are implicit. For example, classes are always

referred to by reference; this means that class XE "class" instances can never reside on the stack

or be passed as function XE "function" parameters.

When passing a static XE "static" array to a function XE "function" , the result, although declared as a static array, will

actually be a reference to a static XE "static" array. For example:

 int abc[3];

Passing abc to functions results in these implicit conversions:

 void XE "void" func(int array[3]);
// actually

 void XE "void" func(int *p);

// abc[3] is converted to a pointer to the first element

 void XE "void" func(int array[]);
// abc[3] is converted to a dynamic array

Class Model

The class XE "class" definition:

class XE "class" XXXX

{

};

Generates the following:

o
An instance of Class called ClassXXXX.

o
A type called StaticClassXXXX which defines all the static XE "static" members XE "static members" .

o
An instance of StaticClassXXXX called StaticXXXX for the static XE "static" members XE "static members" .

Phobos XE "Phobos"
D Runtime Library XE "Runtime Library"
Phobos XE "Phobos" is the standard runtime library XE "library" that comes with the D language compiler XE "compiler" .

Philosophy

Each module in Phobos XE "Phobos" conforms as much as possible to the following design goals. These are goals rather than requirements because D is not a religion, it's a programming language, and it recognizes that sometimes the goals are contradictory and counterproductive in certain situations, and programmers have jobs that need to get done.

Machine and Operating System Independent Interfaces

It's pretty well accepted that gratuitous non-portability should be avoided. This should not be construed, however, as meaning that access to unusual features of an operating system XE "system" should be prevented.

Simple Operations should be Simple

A common and simple operation, like writing an array of bytes to a file XE "file" , should be simple to code. I haven't seen a class XE "class" library XE "library" yet that simply and efficiently implemented common, basic file I/O operations.

Classes should strive to be independent of one another

It's discouraging to pull in a megabyte of code bloat by just trying to read a file XE "file" into an array of bytes. Class independence also means that classes that turn out to be mistakes can be deprecated XE "deprecated" and redesigned without forcing a rewrite of the rest of the class XE "class" library XE "library" .

No pointless wrappers around C runtime library XE "library" functions or OS API functions

D provides direct access to C runtime library XE "library" functions and operating system XE "system" API functions. Pointless D wrappers around those functions just adds blather, bloat, baggage and bugs XE "bugs" .

No user interface XE "interface" windowing classes

GUI styles, philosophies, etc., are not portable from machine to machine. A GUI Windows app should look like a Windows app when running on a Windows machine. It should not look and feel like a Mac app unless it is running on a Mac. Attempts to create a common GUI class XE "class" library XE "library" between Windows, Mac, and other GUI operating systems have all to my knowledge failed.
Java XE "Java" has a successful GUI class library, but does so by creating its own GUI with its own look and feel. This approach is fine for a web language, but not for a systems language like D is.
Windowing class libraries should be separate.

Class implementations should use DBC

This will prove that DBC (Design by Contract XE "Design by Contract") is worthwhile. Not only will it aid in debugging the class XE "class" , but it will help every class user use the class correctly. DBC in the class library XE "library" will have great leverage.

Use Exceptions for Error Handling XE "Error Handling"

See Error Handling in D
.

Imports

Each of these can be imported with the import XE "import" statement. The categories are:

Core D: Available on all D implementations

compiler" compiler

Information about the D compiler XE "compiler" implementation.

conv" conv

Conversion of strings to integers.

ctype" ctype

Simple character classification

date" date

Date and time functions. Support locales.

file" file

Basic XE "Basic" file XE "file" operations like read, write, append.

gc" gc

Control the garbage collector.

math" math

Include all the usual math XE "math" functions like sin, cos, atan, etc.

object" object

The root class XE "class" of the inheritance heirarchy

outbuffer" outbuffer

Assemble data into an array of bytes

path" path

Manipulate file XE "file" names, path XE "path" names, etc.

process" process

Create/destroy threads.

random" random

Random number generation.

regexp" regexp

The usual regular expression functions.

stdint" stdint

Integral types for various purposes.

stream" stream

Stream I/O.

string" string

Basic XE "Basic" string XE "string" operations not covered by array ops.

system" system

Inquire about the CPU, operating system XE "system" .

thread" thread

One per thread XE "thread" . Operations to do on a thread.

zip" zip

Manipulate zip XE "zip" files.

Standard C: interface XE "interface" to C functions

stdio" stdio

Interface to C stdio XE "stdio" functions like printf XE "printf" ().

Operating System and Hardware: platform specific

intrinsic

Compiler built in intrinsic XE "intrinsic" functions

windows

Interface to Windows APIs

compiler XE "compiler"
char XE "char" [] name;

Vendor specific string XE "string" naming the compiler XE "compiler" , for example: "Digital Mars D".

enum XE "enum" Vendor

Master list of D compiler XE "compiler" vendors.

DigitalMars XE "DigitalMars"

Digital Mars

Vendor vendor;

Which vendor produced this compiler XE "compiler" .

uint XE "uint" version_major;

uint XE "uint" version_minor;

The vendor specific version number, as in version_major.version_minor.

uint XE "uint" D_major;

uint XE "uint" D_minor;

The version of the D Programming Language Specification supported by the compiler XE "compiler" .

conv XE "conv"
conv XE "conv" provides basic building blocks for conversions from strings to integral types. They differ from the C functions atoi() and atol() by not allowing whitespace or overflows.

For conversion to signed types, the grammar recognized is:

Integer:

Sign UnsignedInteger

UnsignedInteger

Sign:

+

-
For conversion to unsigned types, the grammar recognized is:

UnsignedInteger:

DecimalDigit

DecimalDigit UnsignedInteger
Any deviation from that grammar causes a ConvError exception to be thrown. Any overflows cause a ConvOverflowError to be thrown.

byte XE "byte" toByte(char XE "char" [] s)

ubyte XE "ubyte" toUbyte(char XE "char" [] s)

short toShort(char XE "char" [] s)

ushort XE "ushort" toUshort(char XE "char" [] s)

int toInt(char XE "char" [] s)

uint XE "uint" toUint(char XE "char" [] s)

long toLong(char XE "char" [] s)

ulong XE "ulong" toUlong(char XE "char" [] s)

ctype XE "ctype"
int isalnum(char XE "char" c)

Returns !=0 if c is a letter or a digit.

int isalpha(char XE "char" c)

Returns !=0 if c is an upper or lower case XE "case" letter.

int iscntrl(char XE "char" c)

Returns !=0 if c is a control character.

int isdigit(char XE "char" c)

Returns !=0 if c is a digit.

int isgraph(char XE "char" c)

Returns !=0 if c is a printing character except for the space character.

int islower(char XE "char" c)

Returns !=0 if c is lower case XE "case" .

int isprint(char XE "char" c)

Returns !=0 if c is a printing character or a space.

int ispunct(char XE "char" c)

Returns !=0 if c is a punctuation character.

int isspace(char XE "char" c)

Returns !=0 if c is a space, tab, vertical tab, form feed, carriage return, or linefeed.

int isupper(char XE "char" c)

Returns !=0 if c is an upper case XE "case" character.

int isxdigit(char XE "char" c)

Returns !=0 if c is a hex digit (0..9, a..f, A..F).

int isascii(uint XE "uint" c)

Returns !=0 if c is in the ascii character set.

char XE "char" tolower(char c)

If c is upper case XE "case" , return the lower case equivalent, otherwise return c.

char XE "char" toupper(char c)

If c is lower case XE "case" , return the upper case equivalent, otherwise return c.

date XE "date"
Dates are represented in several formats. The date XE "date" implementation revolves around a central type, d_time, from which other formats are converted to and from.

typedef XE "typedef" d_time

Is a signed arithmetic type giving the time elapsed since January 1, 1970. Negative values are for dates preceding 1970. The time unit used is Ticks. Ticks are milliseconds or smaller intervals.

The usual arithmetic operations can be performed on d_time, such as adding, subtracting, etc. Elapsed time in Ticks can be computed by subtracting a starting d_time from an ending d_time.

An invalid value for d_time is represented by d_time.init.

int TicksPerSecond

A constant giving the number of Ticks per second for this implementation. It will be at least 1000.

char XE "char" [] toString(d_time t)

Converts t into a text string XE "string" of the form: "Www Mmm dd hh:mm:ss GMT+-TZ yyyy", for example, "Tue Apr 02 02:04:57 GMT-0800 1996". If t is invalid, "Invalid date XE "date" " is returned.

char XE "char" [] toDateString(d_time t)

Converts the date XE "date" portion fo t into a text string XE "string" of the form: "Www Mmm dd yyyy", for example, "Tue Apr 02 1996". If t is invalid, "Invalid date" is returned.

char XE "char" [] toTimeString(d_time t)

Converts the time portion of t into a text string XE "string" of the form: "hh:mm:ss GMT+-TZ", for example, "02:04:57 GMT-0800". If t is invalid, "Invalid date XE "date" " is returned.

d_time parse(char XE "char" [] s)

Parses s as a textual date XE "date" string XE "string" , and returns it as a d_time. If the string is not a valid date, d_time.init is returned.

d_time getUTCtime()

Get current UTC time.

d_time UTCtoLocalTime(d_time t)

Convert from UTC time to local time.

d_time LocalTimetoUTC(d_time t)

Convert from local time to UTC time.

file XE "file"
class XE "class" FileException

Exception thrown if file XE "file" I/O errors.

byte XE "byte" [] read(char XE "char" [] name)

Read file XE "file" name[], return array of bytes read.

void XE "void" write(char XE "char" [] name, byte XE "byte" [] buffer)

Write buffer[] to file XE "file" name[].

void XE "void" append(char XE "char" [] name, byte XE "byte" [] buffer)

Append buffer[] to file XE "file" name[].

void XE "void" rename(char XE "char" [] from, char[] to)

Rename file XE "file" from[] to to[].

void XE "void" remove(char XE "char" [] name)

Delete file XE "file" name[].

uint XE "uint" getSize(char XE "char" [] name)

Get size XE "size" of file XE "file" name[].

uint XE "uint" getAttributes(char XE "char" [] name)

Get file XE "file" name[] attributes.

gc XE "gc"
The garbage collector normally works behind the scenes without needing any specific interaction. These functions are for advanced applications that benefit from tuning the operation of the collector.

class XE "class" OutOfMemory

Thrown if garbage collector runs out of memory XE "out of memory" .

void XE "void" addRoot(void *p)

Add p to list of roots. Roots are references to memory allocated by the collector that are maintained in memory outside the collector pool. The garbage collector will by default XE "default" look for roots in the stacks of each thread XE "thread" , the registers, and the default static XE "static" data segment. If roots are held elsewhere, use addRoot() or addRange() to tell the collector not to free the memory it points to.

void XE "void" removeRoot(void *p)

Remove p from list of roots.

void XE "void" addRange(void *pbot, void *ptop)

Add range to scan for roots.

void XE "void" removeRange(void *pbot)

Remove range.

void XE "void" fullCollect()

Run a full garbage collection cycle. The collector normally runs synchronously with a storage allocation request (i.e. it never happens when in code that does not allocate memory). In some circumstances, for example when a particular task is finished, it is convenient to explicitly run the collector and free up all memory used by that task. It can also be helpful to run a collection before starting a new task that would be annoying if it ran a collection in the middle of that task. Explicitly running a collection can also be done in a separate very low priority thread XE "thread" , so that if the program is idly waiting for input, memory can be cleaned up.

void XE "void" genCollect()

Run a generational garbage collection cycle. Takes less time than a fullCollect(), but isn't as effective.

void XE "void" minimize()

Minimize physical memory usage.

void XE "void" disable()

Temporarilly disable garbage collection cycle. This is used for brief time critical sections of code, so the amount of time it will take is predictable. If the collector runs out of memory XE "out of memory" while it is disabled, it will throw XE "throw" an OutOfMemory exception. The disable() function XE "function" calls can be nested, but must be matched with corresponding enable() calls.

void XE "void" enable()

Reenable garbage collection cycle after being disabled with disable(). It is an error to call more enable()s than disable()s.

intrinsic XE "intrinsic"
Intrinsic functions are functions built in to the compiler XE "compiler" , usually to take advantage of specific CPU features that are inefficient to handle via external functions. The compiler's optimizer and code generator are fully integrated in with intrinsic XE "intrinsic" functions, bringing to bear their full power on them. This can result in some surprising speedups.

int bsf(uint XE "uint" v)

Scans the bits in v starting with bit XE "bit" 0, looking for the first set bit.

int bsr(uint XE "uint" v)

Scans the bits in v from the most significant bit XE "bit" to the least significant bit, looking for the first set bit.

Both return the bit XE "bit" number of the first set bit. The return value is undefined if v is zero.

Example

import XE "import" intrinsic XE "intrinsic" ;

int main()

{

 uint XE "uint" v;

 int x;

 v = 0x21;

 x = bsf(v);

 printf XE "printf" ("bsf(x%x) = %d\n", v, x);

 x = bsr(v);

 printf XE "printf" ("bsr(x%x) = %d\n", v, x);

 return 0;

}

Output

bsf(x21) = 0

bsr(x21) = 5

int bt(uint XE "uint" *p, uint index)

Tests the bit XE "bit" .

int btc(uint XE "uint" *p, uint index)

Tests and complements the bit XE "bit" .

int btr(uint XE "uint" *p, uint index)

Tests and resets (sets to 0) the bit XE "bit" .

int bts(uint XE "uint" *p, uint index)

Tests and sets the bit XE "bit" .

p is a non-NULL pointer to an array of uints. index is a bit XE "bit" number, starting with bit 0 of p[0], and progressing. It addresses bits like the expression:

p[index / (uint XE "uint" .size XE "size" *8)] & (1 << (index & ((uint.size*8) - 1)))

All return a non-zero value if the bit XE "bit" was set, and a zero if it was clear.

Example

import XE "import" intrinsic XE "intrinsic" ;

int main()

{

 uint XE "uint" array[2];

 array[0] = 2;

 array[1] = 0x100;

 printf XE "printf" ("btc(array, 35) = %d\n", btc(array, 35));

 printf XE "printf" ("array = [0]:x%x, [1]:x%x\n", array[0], array[1]);

 printf XE "printf" ("btc(array, 35) = %d\n", btc(array, 35));

 printf XE "printf" ("array = [0]:x%x, [1]:x%x\n", array[0], array[1]);

 printf XE "printf" ("bts(array, 35) = %d\n", bts(array, 35));

 printf XE "printf" ("array = [0]:x%x, [1]:x%x\n", array[0], array[1]);

 printf XE "printf" ("btr(array, 35) = %d\n", btr(array, 35));

 printf XE "printf" ("array = [0]:x%x, [1]:x%x\n", array[0], array[1]);

 printf XE "printf" ("bt(array, 1) = %d\n", bt(array, 1));

 printf XE "printf" ("array = [0]:x%x, [1]:x%x\n", array[0], array[1]);

 return 0;

}

Output

btc(array, 35) = 0

array = [0]:x2, [1]:x108

btc(array, 35) = -1

array = [0]:x2, [1]:x100

bts(array, 35) = 0

array = [0]:x2, [1]:x108

btr(array, 35) = -1

array = [0]:x2, [1]:x100

bt(array, 1) = -1

array = [0]:x2, [1]:x100

ubyte XE "ubyte" inp(uint XE "uint" port_address)

ushort XE "ushort" inpw(uint XE "uint" port_address)

uint XE "uint" inpl(uint port_address)

Reads I/O port at port_address.

ubyte XE "ubyte" outp(uint XE "uint" port_address, ubyte value)

ushort XE "ushort" outpw(uint XE "uint" port_address, ushort value)

uint XE "uint" outpl(uint port_address, uint value)

Writes and returns value to I/O port at port_address.

real cos(real)

real fabs(real)

real rint(real)

long rndtol(real)

real sin(real)

real sqrt(real)

Intrinsic verions of the math XE "math" functions of the same name.

math XE "math"
const XE "const" real PI XE "PI"

const XE "const" real LOG2 XE "LOG2"

const XE "const" real LN2 XE "LN2"

const XE "const" real LOG2T XE "LOG2T"

const XE "const" real LOG2E XE "LOG2E"

const XE "const" real E XE "E"

const XE "const" real LOG10E XE "LOG10E"

const XE "const" real LN10 XE "LN10"

const XE "const" real PI XE "PI" _2

const XE "const" real PI XE "PI" _4

const XE "const" real M_1_PI XE "PI"

const XE "const" real M_2_PI XE "PI"

const XE "const" real M_2_SQRTPI XE "M_2_SQRTPI"

const XE "const" real SQRT2 XE "SQRT2"

const XE "const" real SQRT1_2 XE "SQRT1_2"

Math constants.

real acos(real)

real asin(real)

real atan(real)

real atan2(real, real)

real cos(real x)

Compute cosine of x. x is in radians.
Special values:

	x
	return value
	invalid?

	±INFINITY
	NAN
	yes

real sin(real x)

Compute sine of x. x is in radians.
Special values:

	x
	return value
	invalid?

	±0.0
	±0.0
	no

	±INFINITY
	NAN
	yes

real tan(real x)

Compute tangent of x. x is in radians.
Special values:

	x
	return value
	invalid?

	±0.0
	±0.0
	no

	±INFINITY
	NAN
	yes

real cosh(real)

real sinh(real)

real tanh(real)

real exp(real)

real frexp(real value, out int exp)

Calculate and return x and exp such that:
value=x*2exp
.5 <= |x| < 1.0
x has same sign as value.
Special values:

	value
	x
	exp

	+-0.0
	+-0.0
	0

	+INFINITY
	+INFINITY
	int.max

	-INFINITY
	-INFINITY
	int.min

	+-NAN
	+-NAN
	int.min

real ldexp(real n, int exp)

Compute n * 2exp

real log(real x)

Calculate the natural logarithm of x.
Special values:

	x
	return value
	divide by 0?
	invalid?

	±0.0
	-INFINITY
	yes
	no

	< 0.0
	NAN
	no
	yes

	+INFINITY
	+INFINITY
	no
	no

real log10(real x)

Calculate the base-10 logarithm of x.
Special values:

	x
	return value
	divide by 0?
	invalid?

	±0.0
	-INFINITY
	yes
	no

	< 0.0
	NAN
	no
	yes

	+INFINITY
	+INFINITY
	no
	no

real modf(real, real *)

real pow(real, real)

real sqrt(real x)

Compute square root of x.
Special values:

	x
	return value
	invalid?

	-0.0
	-0.0
	no

	<0.0
	NAN
	yes

	+INFINITY
	+INFINITY
	no

real ceil(real)

real floor(real)

real log1p(real x)

Calculates the natural logarithm of 1 + x. For very small x, log1p(x) will be more accurate than log(1 + x).
Special values:

	x
	log1p(x)
	divide by 0?
	invalid?

	±0.0
	±0.0
	no
	no

	-1.0
	-INFINITY
	yes
	no

	<-1.0
	NAN
	no
	yes

	+INFINITY
	-INFINITY
	no
	no

real expm1(real x)

Calculates the value of the natural logarithm base (e) raised to the power of x, minus 1. For very small x, expm1(x) is more accurate than exp(x)-1.
Special values:

	x
	ex-1

	±0.0
	±0.0

	+INFINITY
	+INFINITY

	-INFINITY
	-1.0

real atof(char XE "char" *)

Math functions.

real hypot(real x, real y)

Calculates the length of the hypotenuse of a right-angled triangle with sides of length x and y. The hypotenuse is the value of the square root of the sums of the squares of x and y:

sqrt(x2 + y2)

Note that hypot(x,y), hypot(y,x) and hypot(x,-y) are equivalent.
Special values:

	x
	y
	return value
	invalid?

	x
	+-0.0
	fabs(x)
	no

	+-INFINITY
	y
	+INFINITY
	no

	+-INFINITY
	NAN
	+INFINITY
	no

int isnan(real e)

Is number a nan?

int isfinite(real e)

Is number finite?

int isnormal(float XE "float" f)

int isnormal(double XE "double" d)

int isnormal(real e)

Is number normalized?

int issubnormal(float XE "float" f)

int issubnormal(double XE "double" d)

int issubnormal(real e)

Is number subnormal? (Also called "denormal".) Subnormals have a 0 exponent and a 0 most significant mantissa bit XE "bit" .

int isinf(real e)

Is number infinity?

int signbit(real e)

Get sign bit XE "bit" .

real copysign(real to, real from)

Copy sign.

object XE "object"
This module is implicitly imported.

class XE "class" Object

All class XE "class" objects in D inherit from Object.

static XE "static" int printf XE "printf" (char XE "char" * format, ...);

C printf XE "printf" function XE "function" .

char XE "char" [] toString()

Convert Object to a human readable string XE "string" .

uint XE "uint" toHash()

Compute hash function XE "function" for Object.

int cmp(Object obj)

Compare with another Object obj. Returns:

<0 for (this < obj)

=0 for (this == obj)

>0 for (this > obj)

class XE "class" ClassInfo

Runtime type information about a class XE "class" .

class XE "class" Exception

All exceptions should be derived from class XE "class" Exception.

outbuffer XE "outbuffer"
class XE "class" OutBuffer

OutBuffer provides a way to build up an array of bytes out of raw data. It is useful for things like preparing an array of bytes to write out to a file XE "file" . OutBuffer's byte XE "byte" order is the format native to the computer. To control the byte order (endianness), use a class XE "class" derived from OutBuffer. To convert an array of bytes back into raw data, use InBuffer.

void XE "void" reserve(uint XE "uint" nbytes)

Preallocate nbytes more to the size XE "size" of the internal buffer. This is a speed optimization, a good guess at the maximum size of the resulting buffer will improve performance by eliminating reallocations and copying.

void XE "void" write(ubyte XE "ubyte" [] bytes)

void XE "void" write(ubyte XE "ubyte" b)

void XE "void" write(byte XE "byte" b)

void XE "void" write(char XE "char" c)

void XE "void" write(ushort XE "ushort" w)

void XE "void" write(short s)

void XE "void" write(wchar XE "wchar" c)

void XE "void" write(uint XE "uint" w)

void XE "void" write(int i)

void XE "void" write(ulong XE "ulong" l)

void XE "void" write(long l)

void XE "void" write(float XE "float" f)

void XE "void" write(double XE "double" f)

void XE "void" write(real f)

void XE "void" write(char XE "char" [] s)

void XE "void" write(OutBuffer buf)

Append data to the internal buffer.

void XE "void" fill0(uint XE "uint" nbytes)

Append nbytes of 0 to the internal buffer.

void XE "void" alignSize(uint XE "uint" alignsize)

0-fill to align XE "align" on an alignsize boundary. alignsize must be a power of 2.

void XE "void" align2()

Optimize common special case XE "case" alignSize(2)

void XE "void" align4()

Optimize common special case XE "case" alignSize(4)

ubyte XE "ubyte" [] toBytes()

Convert internal buffer to array of bytes.

char XE "char" [] toString()

Convert internal buffer to array of chars.

void XE "void" vprintf(char XE "char" [] format, va_list args)

Append output of vprintf() to internal buffer.

void XE "void" printf XE "printf" (char XE "char" [] format, ...)

Append output of printf XE "printf" () to internal buffer.

void XE "void" spread(uint XE "uint" index, uint nbytes)

At offset index into buffer, create nbytes of space by shifting upwards all data past index.

path XE "path"
const XE "const" char XE "char" [] sep;

Character used to separate directory names in a path XE "path" .

const XE "const" char XE "char" [] altsep;

Alternate version of sep[], used in Windows.

const XE "const" char XE "char" [] pathsep;

Path separator string XE "string" .

const XE "const" char XE "char" [] linesep;

String used to separate lines.

const XE "const" char XE "char" [] curdir;

String representing the current directory.

const XE "const" char XE "char" [] pardir;

String representing the parent directory.

char XE "char" [] getExt(char[] fullname)

Get extension. For example, "d:\path XE "path" \foo.bat" returns "bat".

char XE "char" [] getBaseName(char[] fullname)

Get base name. For example, "d:\path XE "path" \foo.bat" returns "foo.bat".

char XE "char" [] getDirName(char[] fullname)

Get directory name. For example, "d:\path XE "path" \foo.bat" returns "d:\path".

char XE "char" [] getDrive(char[] fullname)

Get drive. For example, "d:\path XE "path" \foo.bat" returns "d:". Returns null XE "null" string XE "string" on systems without the concept of a drive.

char XE "char" [] defaultExt(char[] fullname, char[] ext)

Put a default XE "default" extension on fullname if it doesn't already have an extension.

char XE "char" [] addExt(char[] fullname, char[] ext)

Add file XE "file" extension or replace existing extension.

int isabs(char XE "char" [] path XE "path")

Determine if absolute path XE "path" name.

char XE "char" [] join(char[] p1, char[] p2)

Join two path XE "path" components.

int fncharmatch(char XE "char" c1, char c2)

Match file XE "file" name characters. Case sensitivity depends on the operating system XE "system" .

int fnmatch(char XE "char" [] name, char[] pattern)

Match filename strings with pattern[], using the following wildcards:

* match 0 or more characters

? match any character

[chars] match any character that appears between the []

[!chars] match any character that does not appear between the [!]

Matching is case XE "case" sensitive on a file XE "file" system XE "system" that is case sensitive.
Returns:

!=0 match

0 no match

process XE "process"

random XE "random"
void XE "void" rand_seed(uint XE "uint" seed, uint index)

The random XE "random" number generator is seeded at program startup with a random value. This ensures that each program generates a different sequence of random numbers. To generate a repeatable sequence, use rand_seed() to start the sequence. seed and index start it, and each successive value increments index. This means that the nth random number of the sequence can be directly generated by passing index + n to rand_seed().

uint XE "uint" rand()

Get next random XE "random" number in sequence.

regexp XE "regexp"
RegExp is a D class XE "class" to handle regular expressions. Regular expressions are a powerful method of string XE "string" pattern matching. The RegExp class is the core foundation for adding powerful string pattern matching capabilities to programs like grep, text editors, awk, sed, etc. The regular expression language used is the same as that commonly used, however, some of the very advanced forms may behave slightly differently.

The RegExp class XE "class" has these methods:

this(char XE "char" [] pattern, char[] attributes)

Create a new RegExp object XE "object" . Compile pattern[] with attributes[] into an internal form for fast execution. Throws a RegExpError if there are any compilation errors.

char XE "char" [][] split(char[] string XE "string")

Split string XE "string" [] into an array of strings, using the regular expression as the separator. Returns array of slices in string[].

int search(char XE "char" [] string XE "string")

Search string XE "string" [] for match with regular expression.

	Returns
	Description

	>=0
	index of match

	-1
	no match

char XE "char" [][] match(char[] string XE "string")

Search string XE "string" [] for match.

	Attribute
	Returns

	global
	same as call to exec(string XE "string")

	not global
	array of all matches

char XE "char" [][] exec(char[] string XE "string")

Search string XE "string" [] for next match. Returns array of slices into string[] representing matches.

int test(char XE "char" [] string XE "string")

Search string XE "string" [] for next match.

	Returns
	Description

	0
	no match

	!=0
	match

char XE "char" [] replace(char[] string XE "string" , char[] format)

Find regular expression matches in string XE "string" []. Replace those matches with a new string composed of format[] merged with the result of the matches.

	Attribute
	Action

	global
	replace all matches

	not global
	replace first match

Returns the new string XE "string" .

char XE "char" [] replace(char[] format)

After a match is found with test(), this function XE "function" will take the match results and, using the format[] string XE "string" , generate and return a new string. The format commands are:

	Format
	Description

	$$
	insert $

	$&
	insert the matched substring

	$`
	insert the string XE "string" that precedes the match

	$'
	insert the string XE "string" that following the match

	$n
	replace with the nth parenthesized match, n is 1..9

	
	

	$nn
	replace with the nnth parenthesized match, nn is 01..99

	
	

	$
	insert $

char XE "char" [] replaceOld(char[] format)

Like replace(char XE "char" [] format), but uses old style formatting:

	Format
	Description

	&
	replace with the match

	\n
	replace with the nth parenthesized match, n is 1..9

	\c
	replace with char XE "char" c.

stdint XE "stdint"
D constrains integral types to specific sizes. But efficiency of different sizes varies from machine to machine, pointer sizes vary, and the maximum integer size XE "size" varies. stdint XE "stdint" offers a portable way of trading off size vs efficiency, in a manner compatible with the stdint.h definitions in C.

The exact aliases are types of exactly the specified number of bits. The at least aliases are at least the specified number of bits large, and can be larger. The fast aliases are the fastest integral type supported by the processor that is at least as wide as the specified number of bits.

The aliases are:

	Exact Alias
	Description
	At Least Alias
	Description
	Fast Alias
	Description

	int8_t
	exactly 8 bits signed
	int_least8_t
	at least 8 bits signed
	int_fast8_t
	fast 8 bits signed

	uint8_t
	exactly 8 bits unsigned
	uint XE "uint" _least8_t
	at least 8 bits unsigned
	uint XE "uint" _fast8_t
	fast 8 bits unsigned

	int16_t
	exactly 16 bits signed
	int_least16_t
	at least 16 bits signed
	int_fast16_t
	fast 16 bits signed

	uint16_t
	exactly 16 bits unsigned
	uint XE "uint" _least16_t
	at least 16 bits unsigned
	uint XE "uint" _fast16_t
	fast 16 bits unsigned

	int32_t
	exactly 32 bits signed
	int_least32_t
	at least 32 bits signed
	int_fast32_t
	fast 32 bits signed

	uint32_t
	exactly 32 bits unsigned
	uint XE "uint" _least32_t
	at least 32 bits unsigned
	uint XE "uint" _fast32_t
	fast 32 bits unsigned

	int64_t
	exactly 64 bits signed
	int_least64_t
	at least 64 bits signed
	int_fast64_t
	fast 64 bits signed

	uint64_t
	exactly 64 bits unsigned
	uint XE "uint" _least64_t
	at least 64 bits unsigned
	uint XE "uint" _fast64_t
	fast 64 bits unsigned

The ptr aliases are integral types guaranteed to be large enough to hold a pointer without losing bits:

	Alias
	Description

	intptr_t
	signed integral type large enough to hold a pointer

	uintptr_t
	unsigned integral type large enough to hold a pointer

The max aliases are the largest integral types:

	Alias
	Description

	intmax_t
	the largest signed integral type

	uintmax_t
	the largest unsigned integral type

stream XE "stream"
class XE "class" Stream

Stream is the base abstract XE "abstract" class XE "class" from which the other stream XE "stream" classes derive. Stream's byte XE "byte" order is the format native to the computer.

bit XE "bit" readable

Indicates whether this stream XE "stream" can be read from.

bit XE "bit" writeable

Indicates whether this stream XE "stream" can be written to.

bit XE "bit" seekable

Indicates whether this stream XE "stream" can be seeked within.

Reading

These methods require that the readable flag be set. Problems with reading result in a ReadError being thrown.

uint XE "uint" readBlock(void XE "void" * buffer, uint size XE "size")

Read up to size XE "size" bytes into the buffer and return the number of bytes actually read.

void XE "void" readExact(void* buffer, uint XE "uint" size XE "size")

Read exactly size XE "size" bytes into the buffer, throwing a ReadError if it is not correct.

uint XE "uint" read(ubyte XE "ubyte" [] buffer)

Read a block of data big enough to fill the given array and return the actual number of bytes read. Unfilled bytes are not modified.

void XE "void" read(out byte XE "byte" x)
void read(out ubyte XE "ubyte" x)
void read(out short x)
void read(out ushort XE "ushort" x)
void read(out int x)
void read(out uint XE "uint" x)
void read(out long x)
void read(out ulong XE "ulong" x)
void read(out float XE "float" x)
void read(out double XE "double" x)
void read(out real x)
void read(out ireal XE "ireal" x)
void read(out creal XE "creal" x)
void read(out char XE "char" x)
void read(out wchar XE "wchar" x)
void read(out char[] s)
void read(out wchar[] s)

Read a basic type or counted string XE "string" , throwing a ReadError if it could not be read. Outside of byte XE "byte" , ubyte XE "ubyte" , and char XE "char" , the format is implementation-specific and should not be used except as opposite actions to write.

char XE "char" [] readLine()
wchar XE "wchar" [] readLineW()

Read a line that is terminated with some combination of carriage return and line feed or end-of-file XE "file" . The terminators are not included. The wchar XE "wchar" version is identical.

char XE "char" [] readString(uint XE "uint" length)

Read a string XE "string" of the given length, throwing ReadError if there was a problem.

wchar XE "wchar" [] readStringW(uint XE "uint" length)

Read a string XE "string" of the given length, throwing ReadError if there was a problem. The file XE "file" format is implementation-specific and should not be used except as opposite actions to write.

char XE "char" getc()
wchar XE "wchar" getcw()

Read and return the next character in the stream XE "stream" . This is the only method that will handle ungetc properly. getcw's format is implementation-specific.

char XE "char" ungetc(char c)
wchar XE "wchar" ungetcw(wchar c)

Push a character back onto the stream XE "stream" . They will be returned in first-in last-out order from getc/getcw.

int scanf(char XE "char" [] fmt, ...)
int vscanf(char[] fmt, va_list args)

Scan a string XE "string" from the input using a similar form to C's scanf.

Writing

These methods require that the writeable flag be set. Problems with writing result in a WriteError being thrown.

uint XE "uint" writeBlock(void XE "void" * buffer, uint size XE "size")

Write up to size XE "size" bytes from buffer in the stream XE "stream" , returning the actual number of bytes that were written.

void XE "void" writeExact(void* buffer, uint XE "uint" size XE "size")

Write exactly size XE "size" bytes from buffer, or throw XE "throw" a WriteError if that could not be done.

uint XE "uint" write(ubyte XE "ubyte" [] buffer)

Write as much of the buffer as possible, returning the number of bytes written.

void XE "void" write(byte XE "byte" x)
void write(ubyte XE "ubyte" x)
void write(short x)
void write(ushort XE "ushort" x)
void write(int x)
void write(uint XE "uint" x)
void write(long x)
void write(ulong XE "ulong" x)
void write(float XE "float" x)
void write(double XE "double" x)
void write(real x)
void write(ireal XE "ireal" x)
void write(creal XE "creal" x)
void write(char XE "char" x)
void write(wchar XE "wchar" x)
void write(char[] s)
void write(wchar[] s)

Write a basic type or counted string XE "string" . Outside of byte XE "byte" , ubyte XE "ubyte" , and char XE "char" , the format is implementation-specific and should only be used in conjunction with read.

void XE "void" writeLine(char XE "char" [] s)

Write a line of text, appending the line with an operating-system XE "system" -specific line ending.

void XE "void" writeLineW(wchar XE "wchar" [] s)

Write a line of text, appending the line with an operating-system XE "system" -specific line ending. The format is implementation-specific.

void XE "void" writeString(char XE "char" [] s)

Write a string XE "string" of text, throwing WriteError if it could not be fully written.

void XE "void" writeStringW(wchar XE "wchar" [] s)

Write a string XE "string" of text, throwing WriteError if it could not be fully written. The format is implementation-dependent.

uint XE "uint" printf XE "printf" (char XE "char" [] format, ...)

uint XE "uint" vprintf(char XE "char" [] format, va_list args)

Print a formatted string XE "string" into the stream XE "stream" using printf XE "printf" -style syntax, returning the number of bytes written.

void XE "void" copyFrom(Stream s)

Copies all data from s into this stream XE "stream" . This may throw XE "throw" ReadError or WriteError on failure. This restores the file XE "file" position of s so that it is unchanged.

void XE "void" copyFrom(Stream s, uint XE "uint" count)

Copy a specified number of bytes from the given stream XE "stream" into this one. This may throw XE "throw" ReadError or WriteError on failure. Unlike the previous form, this doesn't restore the file XE "file" position of s.

Seeking

These methods require that the seekable flag be set. Problems with seeking result in a SeekError being thrown.

ulong XE "ulong" seek(long offset, SeekPos whence)

Change the current position of the stream XE "stream" . whence is either SeekPos.Set, in which case XE "case" the offset is an absolute index from the beginning of the stream, SeekPos.Current, in which case the offset is a delta from the current position, or SeekPos.End, in which case the offset is a delta from the end of the stream (negative or zero offsets only make sense in that case). This returns the new file XE "file" position.

ulong XE "ulong" seekSet(long offset)

ulong XE "ulong" seekCur(long offset)

ulong XE "ulong" seekEnd(long offset)

Aliases for their normal seek counterparts.

ulong XE "ulong" position()

void XE "void" position(ulong XE "ulong" pos)

Retrieve or set the file XE "file" position, identical to calling seek(0, SeekPos.Current) or seek(pos, SeekPos.Set) respectively.

ulong XE "ulong" size XE "size" ()

Retrieve the size XE "size" of the stream XE "stream" in bytes.

bit XE "bit" eof()

Return whether the current file XE "file" position is the same as the end of the file. This does not require actually reading past the end of the file, as with stdio XE "stdio" .

char XE "char" [] toString()

Read the entire stream XE "stream" and return it as a string XE "string" .

uint XE "uint" toHash()

Get a hash of the stream XE "stream" by reading each byte XE "byte" and using it in a CRC-32 checksum.

class XE "class" File : Stream

This subclass is for file XE "file" system XE "system" streams.

this()

this(char XE "char" [] filename)

this(char XE "char" [] filename, FileMode mode)

Create the stream XE "stream" with no open file XE "file" , an open file in read and write mode, or an open file with explicit file mode. mode, if given, is a combination of FileMode.In (indicating a file that can be read) and FileMode.Out (indicating a file that can be written). If the file does not exist, it is created.

void XE "void" open(char XE "char" [] filename)

void XE "void" open(char XE "char" [] filename, FileMode mode)

Open a file XE "file" for the stream XE "stream" , in an identical manner to the constructors.

void XE "void" create(char XE "char" [] filename)

void XE "void" create(char XE "char" [] filename, FileMode mode)

Create a file XE "file" for the stream XE "stream" .

void XE "void" close()

Close the current file XE "file" if it is open; otherwise it does nothing.

uint XE "uint" readBlock(void XE "void" * buffer, uint size XE "size")

uint XE "uint" writeBlock(void XE "void" * buffer, uint size XE "size")

ulong XE "ulong" seek(long offset, SeekPos rel)

Overrides of the Stream methods.

class XE "class" MemoryStream : Stream

This subclass reads and constructs an array of bytes in memory.

this()

this(ubyte XE "ubyte" [] data)

Create the output buffer and setup for reading, writing, and seeking. The second constructor XE "constructor" loads it with specific input data.

ubyte XE "ubyte" [] data()

Get the current memory data in total.

uint XE "uint" readBlock(void XE "void" * buffer, uint size XE "size")

uint XE "uint" writeBlock(void XE "void" * buffer, uint size XE "size")

ulong XE "ulong" seek(long offset, SeekPos rel)

char XE "char" [] toString()

Overrides of Stream methods.

class XE "class" SliceStream : Stream

This subclass slices off a portion of another stream XE "stream" , making seeking relative to the boundaries of the slice. It could be used to section a large file XE "file" into a set of smaller files, such as with tar archives.

this(Stream base, int low)

Indicate both the base stream XE "stream" to use for reading from and the low part of the slice. The high part of the slice is dependent upon the end of the base stream, so that if you write beyond the end it resizes the stream normally.

this(Stream base, int low, int high)

Indicate the high index as well. Attempting to read or write past the high index results in the end being clipped off.

uint XE "uint" readBlock(void XE "void" * buffer, uint size XE "size")

uint XE "uint" writeBlock(void XE "void" * buffer, uint size XE "size")

ulong XE "ulong" seek(long offset, SeekPos rel)

Overrides of Stream methods.

string XE "string"
To copy or not to copy?

When a function XE "function" takes a string XE "string" as a parameter, and returns a string, is that string the same as the input string, modified in place, or is it a modified copy of the input string? The D array convention is "copy-on-write". This means that if no modifications are done, the original string (or slices of it) can be returned. If any modifications are done, the returned string is a copy.

class XE "class" StringException

Thrown on errors in string XE "string" functions.

const XE "const" char XE "char" [] hexdigits;

"0123456789ABCDEF"

const XE "const" char XE "char" [] digits;

"0123456789"

const XE "const" char XE "char" [] octdigits;

"01234567"

const XE "const" char XE "char" [] lowercase;

"abcdefghijklmnopqrstuvwxyz"

const XE "const" char XE "char" [] uppercase;

"ABCDEFGHIJKLMNOPQRSTUVWXYZ"

const XE "const" char XE "char" [] letters;

"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"

const XE "const" char XE "char" [] whitespace;

" \t\v\r\n\f"

long atoi(char XE "char" [] s)

Convert string XE "string" to integer.

real atof(char XE "char" [] s)

Convert string XE "string" to real.

int cmp(char XE "char" [] s1, char[] s2)

Compare two strings. Returns:

<0 for (s1 < s2)

=0 for (s1 == s2)

>0 for (s1 > s2)

int icmp(char XE "char" [] s1, char[] s2)

Same as cmp() but case XE "case" insensitive.

char XE "char" * toCharz(char[] string XE "string")

Converts a D array of chars to a C-style 0 terminated string XE "string" .

int find(char XE "char" [] s, char c)

Find first occurrance of c in string XE "string" s. Return index in s where it is found. Return -1 if not found.

int rfind(char XE "char" [] s, char c)

Find last occurrance of c in string XE "string" s. Return index in s where it is found. Return -1 if not found.

int find(char XE "char" [] s, char[] sub)

Find first occurrance of sub[] in string XE "string" s[]. Return index in s[] where it is found. Return -1 if not found.

int rfind(char XE "char" [] s, char[] sub)

Find last occurrance of sub in string XE "string" s. Return index in s where it is found. Return -1 if not found.

char XE "char" [] tolower(char[] s)

Convert string XE "string" to lower case XE "case" .

char XE "char" [] toupper(char[] s)

Convert string XE "string" to upper case XE "case" .

char XE "char" [] capitalize(char[] s)

Capitalize first character of string XE "string" .

char XE "char" [] capwords(char[] s)

Capitalize all words in string XE "string" . Remove leading and trailing whitespace. Replace all sequences of whitespace with a single space.

char XE "char" [] join(char[][] words, char[] sep)

Concatenate all the strings together into one string XE "string" ; use sep[] as the separator.

char XE "char" [][] split(char[] s)

Split s[] into an array of words, using whitespace as the delimiter.

char XE "char" [][] split(char[] s, char[] delim)

Split s[] into an array of words, using delim[] as the delimiter.

char XE "char" [][] splitlines(char[] s)

Split s[] into an array of lines, using CR, LF, or CR-LF as the delimiter.

char XE "char" [] stripl(char[] s)

char XE "char" [] stripr(char[] s)

char XE "char" [] strip(char[] s)

Strips leading or trailing whitespace, or both.

char XE "char" [] ljustify(char[] s, int width)

char XE "char" [] rjustify(char[] s, int width)

char XE "char" [] center(char[] s, int width)

Left justify, right justify, or center string XE "string" in field width chars wide.

char XE "char" [] zfill(char[] s, int width)

Same as rjustify(), but fill with '0's.

char XE "char" [] replace(char[] s, char[] from, char[] to)

Replace occurrences of from[] with to[] in s[].

char XE "char" [] replaceSlice(char[] string XE "string" , char[] slice, char[] replacement)

Given a string XE "string" [] with a slice[] into it, replace slice[] with replacement[].

char XE "char" [] insert(char[] s, int index, char[] sub)

Insert sub[] into s[] at location index.

int count(char XE "char" [] s, char[] sub)

Count up all instances of sub[] in s[].

char XE "char" [] expandtabs(char[] s, int tabsize)

Replace tabs with the appropriate number of spaces. tabsize is the distance between tab stops.

char XE "char" [] maketrans(char[] from, char[] to)

Construct translation table for translate().

char XE "char" [] translate(char[] s, char[] transtab, char[] delchars)

Translate characters in s[] using table created by maketrans(). Delete chars in delchars[].

char XE "char" [] toString(uint XE "uint" u)

Convert uint XE "uint" to string XE "string" .

char XE "char" [] toString(char* s)

Convert C-style 0 terminated string XE "string" to D string.

system XE "system"

thread XE "thread"
The thread XE "thread" module defines the class XE "class" Thread. Thread is the basis for writing multithreaded applications. Each thread has a unique instance of class Thread associated with it. It is important to use the Thread class to create and manage threads as the garbage collector needs to know about all the threads.

typedef XE "typedef" ... thread XE "thread" _hdl

The type of the thread XE "thread" handle used by the operating system XE "system" .

class XE "class" Thread

One for each thread XE "thread" .

class XE "class" ThreadError

Thrown for errors.

The members XE "members" of Thread are:

this()

Constructor used by classes derived from Thread that override XE "override" main().

this(int (*fp)(void XE "void" *), void *arg)

Constructor used by classes derived from Thread that override XE "override" run().

this(int delegate XE "delegate" () dg)

Constructor used by classes derived from Thread that override XE "override" run().

thread XE "thread" _hdl hdl;

The handle to this thread XE "thread" assigned by the operating system XE "system" . This is set to thread_id.init if the thread hasn't been started yet.

void XE "void" start();

Create a new thread XE "thread" and start it running. The new thread initializes itself and then calls run(). start() can only be called once.

int run(void XE "void" *p);

Entry point for a thread XE "thread" . If not overridden, it calls the function XE "function" pointer fp and argument arg passed in the constructor XE "constructor" , or the delegate XE "delegate" dg. The return value is the thread exit code, which is normally 0.

void XE "void" wait();

Wait for this thread XE "thread" to terminate. Throws ThreadError if the thread hasn't begun yet or has already terminated or is called on itself.

void XE "void" wait(unsigned milliseconds);

Wait for this thread XE "thread" to terminate or until milliseconds time has elapsed, whichever occurs first. Throws ThreadError if the thread hasn't begun yet or has already terminated or is called on itself.

TS getState();

Returns the state of the thread XE "thread" . The state is one of the following:

	TS
	Description

	INITIAL
	The thread XE "thread" hasn't been started yet.

	RUNNING
	The thread XE "thread" is running or paused.

	TERMINATED
	The thread XE "thread" has ended.

void XE "void" setPriority(PRIORITY *p);

Adjust the priority of this thread XE "thread" .

	PRIORITY
	Description

	INCREASE
	Increase thread XE "thread" priority

	DECREASE
	Decrease thread XE "thread" priority

	IDLE
	Assign thread XE "thread" low priority

	CRITICAL
	Assign thread XE "thread" high priority

static XE "static" Thread getThis();

Returns a reference to the Thread for the thread XE "thread" that called the function XE "function" .

static XE "static" Thread[] getAll();

Returns an array of all the threads currently running.

void XE "void" pause();

Suspend execution of this thread XE "thread" .

void XE "void" resume();

Resume execution of this thread XE "thread" .

static XE "static" void XE "void" pauseAll();

Suspend execution of all threads but this thread XE "thread" .

static XE "static" void XE "void" resumeAll();

Resume execution of all paused threads.

static XE "static" void XE "void" yield();

Give up the remainder of this thread XE "thread" 's time slice.

zip XE "zip"

stdio XE "stdio"
int printf XE "printf" (char XE "char" * format, ...)

C printf XE "printf" () function XE "function" .

D for Win32 XE "Win32"
This describes the D implementation for 32 bit XE "bit" Windows systems. Naturally, Windows specific D features are not portable to other platforms.

Instead of the:

#include <windows.h>

of C, in D there is:

import XE "import" windows;

Calling Conventions

In C, the Windows API XE "Windows API" calling conventions XE "calling conventions" are __stdcall. In D, it is simply:

extern XE "extern" (Windows)

{

... function XE "function" declarations ...

}

The Windows linkage attribute sets both the calling convention and the name mangling scheme to be compatible with Windows.

For functions that in C would be __declspec(dllimport) or __declspec(dllexport), use the export XE "export" attribute:

export XE "export" void XE "void" func(int foo);

If no function XE "function" body XE "body" is given, it's imported. If a function body is given, it's exported.

Windows Executables

Windows GUI applications can be written with D. A sample such can be found in \dmd\samples\d\winsamp.d

These are required:

1. Instead of a main function XE "function" serving as the entry point, a WinMain function is needed.

2. WinMain must follow this form:

3. import XE "import" windows;

4. extern XE "extern" (C) void XE "void" gc XE "gc" _init();

5. extern XE "extern" (C) void XE "void" gc XE "gc" _term();

6. extern XE "extern" (C) void XE "void" _minit();

7. extern XE "extern" (C) void XE "void" _moduleCtor();

8. extern XE "extern" (C) void XE "void" _moduleUnitTests();

9. extern XE "extern" (Windows)

10. int WinMain(HINSTANCE hInstance,

11.
HINSTANCE hPrevInstance,

12.
LPSTR lpCmdLine,

13.
int nCmdShow)

14. {

15. int result;

16. gc XE "gc" _init();

// initialize garbage collector

17. _minit();

// initialize module constructor XE "constructor" table

18. try

19. {

20.
_moduleCtor();

// call module constructors

21.
_moduleUnitTests();
// run unit tests (optional)

22.
result = doit();
// insert user code here

23. }

24. catch XE "catch" (Object o)

// catch any uncaught exceptions

25. {

26.
MessageBoxA(null XE "null" , (char XE "char" *)o.toString(), "Error",

27.

 MB_OK | MB_ICONEXCLAMATION);

28.
result = 0;

// failed

29. }

30. gc XE "gc" _term();

// run finalizers; terminate garbage collector

31. return result;

32. }

The doit() function XE "function" is where the user code goes, the rest of WinMain is boilerplate to initialize and shut down the D runtime system XE "system" .

33. A .def (Module Definition XE "Definition" File) with at least the following two lines in it:

34. EXETYPE NT

35. SUBSYSTEM WINDOWS

Without those, Win32 XE "Win32" will open a text console window whenever the application is run.

36. The presence of WinMain() is recognized by the compiler XE "compiler" causing it to emit a reference to __acrtused and the phobos.lib runtime library XE "library" .

DLL XE "DLL" s (Dynamic Link Libraries)

DLLs can be created in D in roughly the same way as in C. A DllMain() is required, looking like:

import XE "import" windows;

HINSTANCE g_hInst;

extern XE "extern" (C)

{

void XE "void" gc XE "gc" _init();

void XE "void" gc XE "gc" _term();

void XE "void" _minit();

void XE "void" _moduleCtor();

void XE "void" _moduleUnitTests();

}

extern XE "extern" (Windows)

BOOL DllMain(HINSTANCE hInstance, ULONG ulReason, LPVOID pvReserved)

{

 switch XE "switch" (ulReason)

 {

case XE "case" DLL XE "DLL" _PROCESS_ATTACH:

 gc XE "gc" _init();

// initialize GC

 _minit();

// initialize module list

 _moduleCtor();

// run module constructors

 _moduleUnitTests();

// run module unit tests

 break XE "break" ;

case XE "case" DLL XE "DLL" _PROCESS_DETACH:

 gc XE "gc" _term();

// shut down GC

 break XE "break" ;

case XE "case" DLL XE "DLL" _THREAD_ATTACH:

case XE "case" DLL XE "DLL" _THREAD_DETACH:

 // Multiple threads not supported yet

 return false XE "false" ;

 }

 g_hInst=hInstance;

 return true;

}

Notes:

· The _moduleUnitTests() call is optional.

· It's a little crude, I hope to improve it.

· The presence of DllMain() is recognized by the compiler XE "compiler" causing it to emit a reference to __acrtused_dll and the phobos.lib runtime library XE "library" .

Link with a .def (Module Definition XE "Definition" File) along the lines of:

LIBRARY MYDLL

DESCRIPTION 'My DLL XE "DLL" written in D'

EXETYPE

NT

CODE PRELOAD DISCARDABLE

DATA PRELOAD SINGLE

EXPORTS

DllGetClassObject @2

DllCanUnloadNow @3

DllRegisterServer @4

DllUnregisterServer @5

The functions in the EXPORTS list are for illustration. Replace them with the actual exported functions from MYDLL.

Memory Allocation

D DLLs use garbage collected memory management. The question is what happens when pointers to allocated data cross DLL XE "DLL" boundaries? Other DLLs, or callers to a D DLL, may even be written in another language and may have no idea how to interface XE "interface" with D's garbage collector.

There are many approaches to solving this problem. The most practical approaches are to assume that other DLLs have no idea about D. To that end, one of these should work:

· Do not return pointers to D gc XE "gc" allocated memory to the caller of the DLL XE "DLL" . Instead, have the caller allocate a buffer, and have the DLL fill in that buffer.

· Retain a pointer to the data within the D DLL XE "DLL" so the GC will not free it. Establish a protocol where the caller informs the D DLL when it is safe to free the data.

· Use operating system XE "system" primitives like VirtualAlloc() to allocate memory to be transferred between DLLs.

· Use COM interfaces, rather than D class XE "class" objects. D supports the AddRef()/Release() protocol for COM interfaces. Most languages implemented on Win32 XE "Win32" have support for COM, making it a good choice.

COM Programming XE "COM Programming"
Many Windows API XE "Windows API" interfaces are in terms of COM (Common Object Model) objects (also called OLE or ActiveX objects). A COM object XE "object" is an object who's first field is a pointer to a vtbl[], and the first 3 entries in that vtbl[] are for QueryInterface(), AddRef(), and Release().

COM objects are analogous to D interfaces. Any COM object XE "object" can be expressed as a D interface XE "interface" , and every D object with an interface X can be exposed as a COM object X. This means that D is compatible with COM objects implemented in other languages.

While not strictly necessary, the Phobos XE "Phobos" library XE "library" provides an Object useful as a super XE "super" class XE "class" for all D COM objects, called ComObject. ComObject provides a default XE "default" implementation for QueryInterface(), AddRef(), and Release().

Windows COM objects use the Windows calling convention, which is not the default XE "default" for D, so COM functions need to have the attribute extern XE "extern" (Windows). So, to write a COM object XE "object" :

import XE "import" com;

class XE "class" MyCOMobject : ComObject

{

 extern XE "extern" (Windows):

...

}

The sample code includes an example COM client program and server DLL XE "DLL" .

 D vs Other Languages

This table is a quick and rough comparison of various features of D with other languages it is frequently compared with. While many capabilities are available with libraries, this table is for features built in to the language itself.

	Feature
	D
	C
	C++
	C#
	Java XE "Java"

	Garbage Collection

	Yes
	No
	No
	Yes
	Yes

	Functions
	
	
	
	
	

	Function delegates XE "delegates"
	Yes
	No
	No
	Yes
	No

	Function overloading
	Yes
	No
	Yes
	Yes
	Yes

	Out function XE "function" parameters
	Yes
	Yes
	Yes
	Yes
	No

	Nested functions
	Yes
	No
	No
	No
	No

	Function literals
	Yes
	No
	No
	No
	No

	Dynamic closures XE "closures"
	Yes
	No
	No
	No
	No

	Covariant return types
	Yes
	No
	Yes
	No
	No

	Arrays
	
	
	
	
	

	Lightweight arrays XE "arrays"
	Yes
	Yes
	Yes
	No
	No

	Resizeable arrays XE "arrays"
	Yes
	No
	No
	No
	No

	Arrays of bits
	Yes
	No
	No
	No
	No

	Built-in strings
	Yes
	No
	No
	Yes
	Yes

	Array slicing
	Yes
	No
	No
	No
	No

	Array bounds checking XE "bounds checking"
	Yes
	No
	No
	Yes
	Yes

	Associative arrays XE "arrays"
	Yes
	No
	No
	No
	No

	Strong typedefs

	Yes
	No
	No
	No
	No

	Aliases
	Yes
	Yes
	Yes
	No
	No

	OOP
	
	
	
	
	

	Object Oriented
	Yes
	No
	Yes
	Yes
	Yes

	Multiple Inheritance XE "Inheritance"
	No
	No
	Yes
	No
	No

	Interfaces
	Yes
	No
	Yes
	Yes
	Yes

	Operator overloading XE "Operator overloading"
	Yes
	No
	Yes
	Yes
	No

	Modules XE "Modules"
	Yes
	No
	Yes
	Yes
	Yes

	Dynamic class XE "class" loading
	No
	No
	No
	No
	Yes

	Inner classes
	No
	No
	No
	No
	Yes

	Covariant return types
	Yes
	No
	Yes
	No
	No

	Performance XE "Performance"
	
	
	
	
	

	Inline assembler
	Yes
	Yes
	Yes
	No
	No

	Direct access to hardware
	Yes
	Yes
	Yes
	No
	No

	Lightweight objects
	Yes
	Yes
	Yes
	Yes
	No

	Explicit memory allocation XE "memory allocation" control
	Yes
	Yes
	Yes
	No
	No

	Independent of VM
	Yes
	Yes
	Yes
	No
	No

	Direct native code gen
	Yes
	Yes
	Yes
	No
	No

	Templates XE "Templates"
	Yes
	No
	Yes
	No
	No

	Reliability XE "Reliability"
	
	
	
	
	

	Design by Contract

	Yes
	No
	No
	No
	No

	Unit testing XE "testing"
	Yes
	No
	No
	No
	No

	Static construction order
	Yes
	No
	No
	Yes
	Yes

	Guaranteed initialization
	Yes
	No
	No
	Yes
	Yes

	RAII XE "RAII"
	Yes
	No
	Yes
	Yes
	No

	Exception handling
	Yes
	No
	Yes
	Yes
	Yes

	try-catch XE "catch" -finally XE "finally" blocks
	Yes
	No
	No
	Yes
	Yes

	Thread synchronization primitives
	Yes
	No
	No
	Yes
	Yes

	Compatibility XE "Compatibility"
	
	
	
	
	

	Algol-style syntax
	Yes
	Yes
	Yes
	Yes
	Yes

	Enumerated types
	Yes
	Yes
	Yes
	Yes
	No

	Support all C types
	Yes
	Yes
	No
	No
	No

	double" Long double floating point

	Yes
	Yes
	Yes
	No
	No

	Complex and Imaginary XE "Imaginary"
	Yes
	Yes
	No
	No
	No

	Direct access to C
	Yes
	Yes
	Yes
	No
	No

	Use existing debuggers
	Yes
	Yes
	Yes
	No
	No

	Struct member alignment control
	Yes
	Yes
	Yes
	No
	No

	Generates standard object XE "object" files
	Yes
	Yes
	Yes
	No
	No

	Macro preprocessor XE "preprocessor"
	No
	Yes
	Yes
	No
	No

	Other
	
	
	
	
	

	Conditional compilation XE "Conditional compilation"
	Yes
	Yes
	Yes
	Yes
	No

Notes

Object Oriented

This means support for classes, member functions XE "member functions" , inheritance, and virtual function XE "function" dispatch.

Inline assembler

Many C and C++ compilers support an inline assembler, but this is not a standard part of the language, and implementations vary widely in syntax and quality.

Interfaces

Support in C++ for interfaces is weak enough that an IDL (Interface Description Language) was invented to compensate.

Garbage Collection XE "Garbage Collection"

The Hans-Boehm garbage collector can be successfully used with C and C++, but it is not a standard part of the language.

Design by Contract XE "Design by Contract"

The Digital Mars C++ compiler XE "compiler" supports Design by Contract XE "Design by Contract" as an extension.

Strong typedefs XE "typedefs"

Strong typedefs XE "typedefs" can be emulated in C/C++ by wrapping a type in a struct XE "struct" . Getting this to work right requires much tedious programming, and so is considered as not supported.

Struct member alignment control

Although many C/C++ compilers contain pragmas to specify struct XE "struct" alignment, these are nonstandard and incompatible from compiler XE "compiler" to compiler.

Long double XE "double" floating point

While the standard for C and C++ specify long doubles, few compilers (besides Digital Mars C/C++) actually implement 80 bit XE "bit" (or longer) floating point types.

Programming in D for C Programmers

Every experienced C programmer accumulates a series of idioms and techniques which become second nature. Sometimes, when learning a new language, those idioms can be so comfortable it's hard to see how to do the equivalent in the new language. So here's a collection of common C techniques, and how to do the corresponding task in D.

Since C does not have object XE "object" -oriented features, there's a separate section for object-oriented issues Programming in D for C++ Programmers.

The C preprocessor XE "preprocessor" is covered in The C Preprocessor vs D.

· Getting the Size of a Type

· Get the max and min values of a type

· Primitive Types

· Special Floating Point Values

· Taking the Modulus of a floating point number

· Dealing with NAN's in floating point compares

· Asserts

· Initializing all elements of an array

· Looping through an array

· Creating an array of variable size

· String Concatenation

· Formatted printing

· Forward referencing functions

· Functions that have no arguments

· break" Labelled break's and continue XE "continue" 's

· Goto Statements

· Struct tag name space

· Looking up strings

· Setting struct member alignment

· Anonymous Structs and Unions

· Declaring struct types and variables

· Getting the offset of a struct member

· Union initializations

· Struct initializations

· Array initializations

· String Literals" Escaped String Literals

· Ascii vs Wide Characters

· enum" Arrays that parallel an enum

· typedef" Creating a new typedef'd type

· Comparing structs

· Comparing strings

· Sorting arrays

· Volatile memory access

· String literals

· Data Structure Traversal

Getting the Size of a Type

The C Way

sizeof(int)

sizeof(char XE "char" *)

sizeof(double XE "double")

sizeof(struct XE "struct" Foo)

The D Way

Use the size XE "size" property:

 int.size XE "size"
 (char XE "char" *).size XE "size"
 double XE "double" .size XE "size"
 Foo.size XE "size"

Get the max and min values of a type

The C Way

#include <limits.h>

#include <math XE "math" .h>

CHAR_MAX

CHAR_MIN

ULONG_MAX

DBL_MIN

The D Way

 char XE "char" .max

 char XE "char" .min

 ulong XE "ulong" .max

 double XE "double" .min

Primitive Types

C to D types

 bool => bit XE "bit"

 char XE "char" => char

 signed char XE "char" => byte XE "byte"

 unsigned char XE "char" => ubyte XE "ubyte"

 short => short

 unsigned short => ushort XE "ushort"

 wchar XE "wchar" _t => wchar

 int => int

 unsigned => uint XE "uint"

 long => int

 unsigned long => uint XE "uint"

 long long => long

 unsigned long long => ulong XE "ulong"

 float XE "float" => float

 double XE "double" => double

 long double XE "double" => extended

_Imaginary XE "Imaginary" long double XE "double" => imaginary

_Complex long double XE "double" => complex XE "complex"
Although char XE "char" is an unsigned 8 bit XE "bit" type, and wchar XE "wchar" is an unsigned 16 bit type, they have their own separate types in order to aid overloading and type safety.

Ints and unsigneds in C are of varying size XE "size" ; not so in D.

Special Floating Point XE "Floating Point" Values

The C Way

 #include <fp.h>

 NAN

 INFINITY

 #include <float XE "float" .h>

 DBL_DIG

 DBL_EPSILON

 DBL_MANT_DIG

 DBL_MAX_10_EXP

 DBL_MAX_EXP

 DBL_MIN_10_EXP

 DBL_MIN_EXP

The D Way

 double XE "double" .nan

 double XE "double" .infinity

 double XE "double" .dig

 double XE "double" .epsilon

 double XE "double" .mant_dig

 double XE "double" .max_10_exp

 double XE "double" .max_exp

 double XE "double" .min_10_exp

 double XE "double" .min_exp

Taking the Modulus of a floating point number

The C Way

 #include <math XE "math" .h>

 float XE "float" f = fmodf(x,y);

 double XE "double" d = fmod(x,y);

 long double XE "double" e = fmodl(x,y);

The D Way

D supports the modulus ('%') operator on floating point operands:

 float XE "float" f = x % y;

 double XE "double" d = x % y;

 extended e = x % y;

Dealing with NAN's in floating point compares

The C Way

C doesn't define what happens if an operand to a compare is NAN, and few C compilers check for it (the Digital Mars C compiler XE "compiler" is an exception, DM's compilers do check for NAN operands).

 #include <math XE "math" .h>

 if (isnan(x) || isnan(y))

 result = FALSE;

 else

 result = (x < y);

The D Way

D offers a full complement of comparisons XE "comparisons" and operators that work with NAN arguments.

 result = (x < y); // false XE "false" if x or y is nan

Assert's are a necessary part of any good defensive coding strategy.

The C Way

C doesn't directly support assert XE "assert" , but does support __FILE__ and __LINE__ from which an assert macro can be built. In fact, there appears to be practically no other use for __FILE__ and __LINE__.

 #include <assert XE "assert" .h>

 assert XE "assert" (e == 0);

The D Way

D simply builds assert XE "assert" into the language:

 assert XE "assert" (e == 0);

[NOTE: trace functions?]

Initializing all elements of an array

The C Way

 #define ARRAY_LENGTH 17

 int array[ARRAY_LENGTH];

 for (i = 0; i < ARRAY_LENGTH; i++)

 array[i] = value;

The D Way

 int array[17];

 array[] = value;

Looping through an array

The C Way

The array length is defined separately, or a clumsy sizeof() expression is used to get the length.

 #define ARRAY_LENGTH 17

 int array[ARRAY_LENGTH];

 for (i = 0; i < ARRAY_LENGTH; i++)

 func(array[i]);

or:

 int array[17];

 for (i = 0; i < sizeof(array) / sizeof(array[0]); i++)

 func(array[i]);

The D Way

The length of an array is accessible the property "length".

 int array[17];

 for (i = 0; i < array.length; i++)

 func(array[i]);

Creating an array of variable size XE "size"
The C Way

C cannot do this with arrays XE "arrays" . It is necessary to create a separate variable for the length, and then explicitly manage the size XE "size" of the array:

 #include <stdlib.h>

 int array_length;

 int *array;

 int *newarray;

 newarray = (int *) realloc(array, (array_length + 1) * sizeof(int));

 if (!newarray)

 error("out of memory XE "out of memory" ");

 array = newarray;

 array[array_length++] = x;

The D Way

D supports dynamic arrays XE "arrays" , which can be easilly resized. D supports all the requisite memory management.

 int array[];

 array[array.length++] = x;

String Concatenation XE "Concatenation"
The C Way

There are several difficulties to be resolved, like when can storage be free'd, dealing with null XE "null" pointers, finding the length of the strings, and memory allocation XE "memory allocation" :

 #include <string XE "string" .h>

 char XE "char" *s1;

 char XE "char" *s2;

 char XE "char" *s;

 // Concatenate s1 and s2, and put result in s

 free(s);

 s = (char XE "char" *)malloc((s1 ? strlen(s1) : 0) +

 (s2 ? strlen(s2) : 0) + 1);

 if (!s)

 error("out of memory XE "out of memory" ");

 if (s1)

 strcpy(s, s1);

 else

 *s = 0;

 if (s2)

 strcpy(s + strlen(s), s2);

 // Append "hello" to s

 char XE "char" hello[] = "hello";

 char XE "char" *news;

 size XE "size" _t lens = s ? strlen(s) : 0;

 news = (char XE "char" *)realloc(s, (lens + sizeof(hello) + 1) * sizeof(char));

 if (!news)

 error("out of memory XE "out of memory" ");

 s = news;

 memcpy(s + lens, hello, sizeof(hello));

The D Way

D overloads the operators ~ and ~= for char XE "char" and wchar XE "wchar" arrays XE "arrays" to mean concatenate and append, respectively:

 char XE "char" s1[];

 char XE "char" s2[];

 char XE "char" s[];

 s = s1 ~ s2;

 s ~= "hello";

Formatted printing

The C Way

printf XE "printf" () is the general purpose formatted print routine:

 #include <stdio XE "stdio" .h>

 printf XE "printf" ("Calling all cars %d times!\n", ntimes);

The D Way

What can we say? printf XE "printf" () rules:

 import XE "import" stdio XE "stdio" ;

 printf XE "printf" ("Calling all cars %d times!\n", ntimes);

Forward referencing functions

The C Way

Functions cannot be forward referenced. Hence, to call a function XE "function" not yet encountered in the source file XE "source file" , it is necessary to insert a function declaration lexically preceding the call.

 void XE "void" forwardfunc();

 void XE "void" myfunc()

 {

 forwardfunc();

 }

 void XE "void" forwardfunc()

 {

 ...

 }

The D Way

The program is looked at as a whole, and so not only is it not necessary to code forward declarations, it is not even allowed! D avoids the tedium and errors associated with writing forward referenced function XE "function" declarations twice. Functions can be defined in any order.

 void XE "void" myfunc()

 {

 forwardfunc();

 }

 void XE "void" forwardfunc()

 {

 ...

 }

Functions that have no arguments

The C Way

 void XE "void" function XE "function" (void);

The D Way

D is a strongly typed language, so there is no need to explicitly say a function XE "function" takes no arguments, just don't declare it has having arguments.

 void XE "void" function XE "function" ()

 {

 ...

 }

Labelled break XE "break" 's and continue XE "continue" 's.

The C Way

Break XE "Break" 's and continue XE "continue" 's only apply to the innermost nested loop or switch XE "switch" , so a multilevel break XE "break" must use a goto XE "goto" :

 for (i = 0; i < 10; i++)

 {

 for (j = 0; j < 10; j++)

 {

 if (j == 3)

 goto XE "goto" Louter;

 if (j == 4)

 goto XE "goto" L2;

 }

 L2:

 ;

 }

 Louter:

 ;

The D Way

Break XE "Break" and continue XE "continue" statements can be followed by a label. The label is the label for an enclosing loop or switch XE "switch" , and the break XE "break" applies to that loop.

 Louter:

 for (i = 0; i < 10; i++)

 {

 for (j = 0; j < 10; j++)

 {

 if (j == 3)

 break XE "break" Louter;

 if (j == 4)

 continue XE "continue" Louter;

 }

 }

 // break XE "break" Louter goes here

Goto Statements XE "Statements"
The C Way

The much maligned goto XE "goto" statement is a staple for professional C coders. It's necessary to make up for sometimes inadequate control flow statements.

The D Way

Many C-way goto XE "goto" statements can be eliminated with the D feature of labelled break XE "break" and continue XE "continue" statements. But D is a practical language for practical programmers who know when the rules need to be broken. So of course D supports the goto!

Struct tag name space

The C Way

It's annoying to have to put the struct XE "struct" keyword every time a type is specified, so a common idiom is to use:

 typedef XE "typedef" struct XE "struct" ABC { ... } ABC;

The D Way

Struct tag names are not in a separate name space, they are in the same name space as ordinary names. Hence:

 struct XE "struct" ABC { ... };

Looking up strings

The C Way

Given a string XE "string" , compare the string against a list of possible values and take action based on which one it is. A typical use for this might be command line argument processing.

 #include <string XE "string" .h>

 void XE "void" dostring(char XE "char" *s)

 {

 enum XE "enum" Strings XE "Strings" { Hello, Goodbye, Maybe, Max };

 static XE "static" char XE "char" *table[] = { "hello", "goodbye", "maybe" };

 int i;

 for (i = 0; i < Max; i++)

 {

 if (strcmp(s, table[i]) == 0)

 break XE "break" ;

 }

 switch XE "switch" (i)

 {

 case XE "case" Hello: ...

 case XE "case" Goodbye: ...

 case XE "case" Maybe: ...

 default XE "default" : ...

 }

 }

The problem with this is trying to maintain 3 parallel data structures, the enum XE "enum" , the table, and the switch XE "switch" cases. If there are a lot of values, the connection between the 3 may not be so obvious when doing maintenance, and so the situation is ripe for bugs XE "bugs" . Additionally, if the number of values becomes large, a binary or hash lookup will yield a considerable performance increase over a simple linear search. But coding these can be time consuming, and they need to be debugged. It's typical that such just never gets done.

The D Way

D extends the concept of switch XE "switch" statements to be able to handle strings as well as numbers. Then, the way to code the string XE "string" lookup becomes straightforward:

 void XE "void" dostring(char XE "char" s[])

 {

 switch XE "switch" (s)

 {

 case XE "case" "hello": ...

 case XE "case" "goodbye": ...

 case XE "case" "maybe": ...

 default XE "default" : ...

 }

 }

Adding new cases becomes easy. The compiler XE "compiler" can be relied on to generate a fast lookup scheme for it, eliminating the bugs XE "bugs" and time required in hand-coding one.

Setting struct XE "struct" member alignment

The C Way

It's done through a command line switch XE "switch" which affects the entire program, and woe results if any modules or libraries didn't get recompiled. To address this, #pragma's are used:

 #pragma pack(1)

 struct XE "struct" ABC

 {

 ...

 };

 #pragma pack()

But #pragmas are nonportable both in theory and in practice from compiler XE "compiler" to compiler.

The D Way

Clearly, since much of the point to setting alignment is for portability of data, a portable means of expressing it is necessary.

 struct XE "struct" ABC

 {

 int z; // z is aligned to the default XE "default"

 align XE "align" 1 int x; // x is byte XE "byte" aligned

 align XE "align" 4

 {

 ... // declarations in {} are dword aligned

 }

 align XE "align" 2: // switch XE "switch" to word alignment from here on

 int y; // y is word aligned

 }

Anonymous Structs and Unions

Sometimes, it's nice to control the layout of a struct XE "struct" with nested structs and unions.

The C Way

C doesn't allow anonymous structs or unions, which means that dummy tag names and dummy members XE "members" are necessary:

 struct XE "struct" Foo

 { int i;

 union XE "union" Bar

 {

 struct XE "struct" Abc { int x; long y; } _abc;

 char XE "char" *p;

 } _bar;

 };

 #define x _bar._abc.x

 #define y _bar._abc.y

 #define p _bar.p

 struct XE "struct" Foo f;

 f.i;

 f.x;

 f.y;

 f.p;

Not only is it clumsy, but using macros XE "macros" means a symbolic debugger won't understand what is being done, and the macros have global scope instead of struct XE "struct" scope.

The D Way

Anonymous structs and unions are used to control the layout in a more natural manner:

 struct XE "struct" Foo

 { int i;

 union XE "union"

 {

 struct XE "struct" { int x; long y; }

 char XE "char" *p;

 }

 }

 Foo f;

 f.i;

 f.x;

 f.y;

 f.p;

Declaring struct XE "struct" types and variables.

The C Way

Is to do it in one statement ending with a semicolon:

 struct XE "struct" Foo { int x; int y; } foo;

Or to separate the two:

 struct XE "struct" Foo { int x; int y; }; // note terminating ;

 struct XE "struct" Foo foo;

The D Way

Struct definitions and declarations can't be done in the same statement:

 struct XE "struct" Foo { int x; int y; } // note there is no terminating ;

 Foo foo;

which means that the terminating ; can be dispensed with, eliminating the confusing difference between struct XE "struct" {} and function XE "function" & block {} in how semicolons are used.

Getting the offset of a struct XE "struct" member.

The C Way

Naturally, another macro is used:

 #include <stddef>

 struct XE "struct" Foo { int x; int y; };

 off = offsetof(Foo, y);

The D Way

An offset is just another property:

 struct XE "struct" Foo { int x; int y; }

 off = Foo.y.offset;

Union initializations.

The C Way

Unions are initialized using the "first member" rule:

 union XE "union" U { int a; long b; };

 union XE "union" U x = { 5 }; // initialize member 'a' to 5

Adding union XE "union" members XE "members" or rearranging them can have disastrous consequences for any initializers.

The D Way

In D, which member is being initialized is mentioned explicitly:

 union XE "union" U { int a; long b; }

 U x = { a:5 }

avoiding the confusion and maintenance problems.

Struct initializations.

The C Way

Members are initialized by their position within the {}'s:

 struct XE "struct" S { int a; int b; };

 struct XE "struct" S x = { 5, 3 };

This isn't much of a problem with small structs, but when there are numerous members XE "members" , it becomes tedious to get the initializers carefully lined up with the field declarations. Then, if members are added or rearranged, all the initializations have to be found and modified appropriately. This is a minefield for bugs XE "bugs" .

The D Way

Member initialization is done explicitly:

 struct XE "struct" S { int a; int b; }

 S x = { b:3, a:5 }

The meaning is clear, and there no longer is a positional dependence.

Array initializations.

The C Way

C initializes array by positional dependence:

 int a[3] = { 3,2,2 };

Nested arrays XE "arrays" may or may not have the { }:

 int b[3][2] = { 2,3, {6,5}, 3,4 };

The D Way

D does it by positional dependence too, but an index can be used as well: The following all produce the same result:

 int a[3] = [3, 2, 0];

 int a[3] = [3, 2]; // unsupplied initializers are 0, just like in C

 int a[3] = [2:0, 0:3, 1:2];

 int a[3] = [2:0, 0:3, 2]; // if not supplied, the index is the previous

 // one plus one.

This can be handy if the array will be indexed by an enum XE "enum" , and the order of enums may be changed or added to:

 enum XE "enum" color { black, red, green }

 int c[3] = [black:3, green:2, red:5];

Nested array initializations must be explicit:

 int b[3][2] = [[2,3], [6,5], [3,4]];

 int b[3][2] = [[2,6,3],[3,5,4]]; // error

Escaped String Literals XE "String Literals"
The C Way

C has problems with the DOS file XE "file" system XE "system" because a \ is an escape in a string XE "string" . To specifiy file c:\root\file.c:

 char XE "char" file XE "file" [] = "c:\\root\\file.c";

This gets even more unpleasant with regular expressions. Consider the escape sequence to match a quoted string XE "string" :

 /"[^\\]*(\\.[^\\]*)*"/

In C, this horror is expressed as:

 char XE "char" quoteString[] = "\"[^\\\\]*(\\\\.[^\\\\]*)*\"";

The D Way

Within strings, it is WYSIWYG (what you see is what you get). Escapes are in separate strings. So:

 char XE "char" file XE "file" [] = 'c:\root\file.c';

 char XE "char" quoteString[] = \" '[^\\]*(\\.[^\\]*)*' \";

The famous hello world string XE "string" becomes:

 char XE "char" hello[] = "hello world" \n;

Ascii vs Wide Characters

Modern programming requires that wchar XE "wchar" strings be supported in an easy way, for internationalization of the programs.

The C Way

C uses the wchar XE "wchar" _t and the L prefix on strings:

 #include <wchar XE "wchar" .h>

 char XE "char" foo_ascii[] = "hello";

 wchar XE "wchar" _t foo_wchar[] = L"hello";

Things get worse if code is written to be both ascii and wchar XE "wchar" compatible. A macro is used to switch XE "switch" strings from ascii to wchar:

 #include <tchar.h>

 tchar string XE "string" [] = TEXT("hello");

The D Way

The type of a string XE "string" is determined by semantic analysis, so there is no need to wrap strings in a macro call:

 char XE "char" foo_ascii[] = "hello"; // string XE "string" is taken to be ascii

 wchar XE "wchar" foo_wchar[] = "hello"; // string XE "string" is taken to be wchar

Arrays that parallel an enum XE "enum"
The C Way

Consider:

 enum XE "enum" COLORS { red, blue, green, max };

 char XE "char" *cstring[max] = {"red", "blue", "green" };

This is fairly easy to get right because the number of entries is small. But suppose it gets to be fairly large. Then it can get difficult to maintain correctly when new entries are added.

The D Way

 enum XE "enum" COLORS { red, blue, green }

 char XE "char" cstring[COLORS.max + 1][] =

 [

COLORS.red : "red",

COLORS.blue : "blue",

COLORS.green : "green",

];

Not perfect, but better.

Creating a new typedef XE "typedef" 'd type

The C Way

Typedef's in C are weak, that is, they really do not introduce a new type. The compiler XE "compiler" doesn't distinguish between a typedef XE "typedef" and its underlying type.

typedef XE "typedef" void XE "void" *Handle;

void XE "void" foo(void *);

void XE "void" bar(Handle);

Handle h;

foo(h);

// coding bug not caught

bar(h);

// ok

The C solution is to create a dummy struct XE "struct" whose sole purpose is to get type checking and overloading on the new type.

struct XE "struct" Handle__ { void XE "void" *value; }

typedef XE "typedef" struct XE "struct" Handle__ *Handle;

void XE "void" foo(void *);

void XE "void" bar(Handle);

Handle h;

foo(h);

// syntax error

bar(h);

// ok

Having a default XE "default" value for the type involves defining a macro, a naming convention, and then pedantically following that convention:

#define HANDLE_INIT ((Handle)-1)

Handle h = HANDLE_INIT;

h = func();

if (h != HANDLE_INIT)

 ...

For the struct XE "struct" solution, things get even more complex XE "complex" :

struct XE "struct" Handle__ HANDLE_INIT;

void XE "void" init_handle()
// call this function XE "function" upon startup

{

 HANDLE_INIT.value = (void XE "void" *)-1;

}

Handle h = HANDLE_INIT;

h = func();

if (memcmp(&h,&HANDLE_INIT,sizeof(Handle)) != 0)

 ...

There are 4 names to remember: Handle, HANDLE_INIT, struct XE "struct" Handle__, value.

The D Way

No need for idiomatic constructions like the above. Just write:

typedef XE "typedef" void XE "void" *Handle;

void XE "void" foo(void *);

void XE "void" bar(Handle);

Handle h;

foo(h);

// syntax error

bar(h);

// ok

To handle a default XE "default" value, add an initializer to the typedef XE "typedef" , and refer to it with the .init property:

typedef XE "typedef" void XE "void" * Handle = cast XE "cast" (void*)(-1);

Handle h;

h = func();

if (h != Handle.init)

 ...

There's only one name to remember: Handle.

Comparing structs

The C Way

While C defines struct XE "struct" assignment in a simple, convenient manner:

struct XE "struct" A x, y;

...

x = y;

it does not for struct XE "struct" comparisons XE "comparisons" . Hence, to compare two struct instances for equality:

#include <string XE "string" .h>

struct XE "struct" A x, y;

...

if (memcmp(&x, &y, sizeof(struct XE "struct" A)) == 0)

 ...

Note the obtuseness of this, coupled with the lack of any kind of help from the language with type checking.

There's a nasty bug lurking in the memcmp(). The layout of a struct XE "struct" , due to alignment, can have 'holes' in it. C does not guarantee those holes are assigned any values, and so two different struct instances can have the same value for each member, but compare different because the holes contain different garbage.

The D Way

D does it the obvious, straightforward way:

A x, y;

...

if (x == y)

 ...

Comparing strings

The C Way

The library XE "library" function XE "function" strcmp() is used:

char XE "char" string XE "string" [] = "hello";

if (strcmp(string XE "string" , "betty") == 0)
// do strings match?

 ...

C uses 0 terminated strings, so the C way has an inherent inefficiency in constantly scanning for the terminating 0.

The D Way

Why not use the == operator?

char XE "char" [] string XE "string" = "hello";

if (string XE "string" == "betty")

 ...

D strings have the length stored separately from the string XE "string" . Thus, the implementation of string compares can be much faster than in C (the difference being equivalent to the difference in speed between the C memcmp() and strcmp()).

D supports comparison operators on strings, too:

char XE "char" [] string XE "string" = "hello";

if (string XE "string" < "betty")

 ...

which is useful for sorting/searching.

Sorting arrays XE "arrays"
The C Way

Although many C programmers tend to reimplmement bubble sorts over and over, the right way to sort in C is to use qsort():

int compare(const XE "const" void XE "void" *p1, const void *p2)

{

 type *t1 = (type *)p1;

 type *t1 = (type *)p2;

 return *t1 - *t2;

}

type array[10];

...

qsort(array, sizeof(array)/sizeof(array[0]), sizeof(array[0]), compare);

A compare() must be written for each type, and much careful typo-prone code needs to be written to make it work.

The D Way

Sorting couldn't be easier:

type[] array;

...

array.sort;

// sort array in-place

Volatile memory access

The C Way

To access volatile XE "volatile" memory, such as shared memory or memory mapped I/O, a pointer to volatile is created:

volatile XE "volatile" int *p = address;

i = *p;

The D Way

D has volatile XE "volatile" as a statement type, not as a type modifier:

int* p = address;

volatile XE "volatile" { i = *p; }

String literals

The C Way

String literals in C cannot span multiple lines, so to have a block of text it is necessary to use \ line splicing:

"This text spans\n\

multiple\n\

lines\n"

If there is a lot of text, this can wind up being tedious.

The D Way

String literals can span multiple lines, as in:

"This text spans

multiple

lines

"

So blocks of text can just be cut and pasted into the D source.

Data Structure Traversal

The C Way

Consider a function XE "function" to traverse a recursive data structure. In this example, there's a simple symbol table of strings. The data structure is an array of binary trees. The code needs to do an exhaustive search of it to find a particular string XE "string" in it, and determine if it is a unique instance.

To make this work, a helper function XE "function" membersearchx is needed to recursively walk the trees. The helper function needs to read and write some context outside of the trees, so a custom struct XE "struct" Paramblock is created and a pointer to it is used to maximize efficiency.

 struct XE "struct" Symbol

 {
char XE "char" *id;

struct XE "struct" Symbol *left;

struct XE "struct" Symbol *right;

 };

 struct XE "struct" Paramblock

 { char XE "char" *id;

struct XE "struct" Symbol *sm;

 };

 static XE "static" void XE "void" membersearchx(struct XE "struct" Paramblock *p, struct Symbol *s)

 {

while (s)

{

 if (strcmp(p->id,s->id) == 0)

 {

if (p->sm)

 error("ambiguous member %s\n",p->id);

p->sm = s;

 }

 if (s->left)

membersearchx(p,s->left);

 s = s->right;

}

 }

 struct XE "struct" Symbol *symbol_membersearch(Symbol *table[], int tablemax, char XE "char" *id)

 {

struct XE "struct" Paramblock pb;

int i;

pb.id = id;

pb.sm = NULL;

for (i = 0; i < tablemax; i++)

{

 membersearchx(pb, table[i]);

}

return pb.sm;

 }

The D Way

This is the same algorithm in D, and it shrinks dramatically. Since nested functions have access to the lexically enclosing function XE "function" 's variables, there's no need for a Paramblock or to deal with its bookkeeping details. The nested helper function is contained wholly within the function that needs it, improving locality and maintainability.

The performance of the two versions is indistinguishable.

 class XE "class" Symbol

 {
char XE "char" [] id;

Symbol left;

Symbol right;

 }

 Symbol symbol_membersearch(Symbol[] table, char XE "char" [] id)

 { Symbol sm;

void XE "void" membersearchx(Symbol s)

{

 while (s)

 {

if (id == s.id)

{

 if (sm)

error("ambiguous member %s\n", id);

 sm = s;

}

if (s.left)

 membersearchx(s.left);

s = s.right;

 }

}

for (int i = 0; i < table.length; i++)

{

 membersearchx(table[i]);

}

return sm;

 }

Programming in D for C++ Programmers

Every experienced C++ programmer accumulates a series of idioms and techniques which become second nature. Sometimes, when learning a new language, those idioms can be so comfortable it's hard to see how to do the equivalent in the new language. So here's a collection of common C++ techniques, and how to do the corresponding task in D.

See also: Programming in D for C Programmers

· Defining Constructors

· Base class initialization

· Comparing structs

· typedef" Creating a new typedef'd type

· Friends

· Operator overloading" Operator overloading

· Namespace using declarations

· RAII" RAII (Resource Acquisition Is Initialization XE "Initialization")

· Dynamic Closures

Defining constructors

The C++ Way

Constructors have the same name as the class XE "class" :

class XE "class" Foo

{

Foo(int x);

};

The D Way

Constructors are defined with the this keyword:

class XE "class" Foo

{

this(int x) { }

}

which reflects how they are used in D.

Base class XE "class" initialization

The C++ Way

Base constructors are called using the base initializer syntax.

class XE "class" A { A() {... } };

class XE "class" B : A

{

 B(int x)

: A()

// call base constructor XE "constructor"

 {
...

 }

};

The D Way

The base class XE "class" constructor XE "constructor" is called with the super XE "super" syntax:

class XE "class" A { this() { ... } }

class XE "class" B : A

{

 this(int x)

 {
...

super XE "super" ();

// call base constructor XE "constructor"

...

 }

}

It's superior to C++ in that the base constructor XE "constructor" call can be flexibly placed anywhere in the derived constructor. D can also have one constructor call another one:

class XE "class" A

{
int a;

int b;

this() { a = 7; b = foo(); }

this(int x)

{

 this();

 a = x;

}

}

Members can also be initialized to constants before the constructor XE "constructor" is ever called, so the above example is equivalently written as:

class XE "class" A

{
int a = 7;

int b;

this() { b = foo(); }

this(int x)

{

 this();

 a = x;

}

}

Comparing structs

The C++ Way

While C++ defines struct XE "struct" assignment in a simple, convenient manner:

struct XE "struct" A x, y;

...

x = y;

it does not for struct XE "struct" comparisons XE "comparisons" . Hence, to compare two struct instances for equality:

#include <string XE "string" .h>

struct XE "struct" A x, y;

inline bool operator==(const XE "const" A& x, const A& y)

{

 return (memcmp(&x, &y, sizeof(struct XE "struct" A)) == 0);

}

...

if (x == y)

 ...

Note that the operator overload must be done for every struct XE "struct" needing to be compared, and the implementation of that overloaded operator is free of any language help with type checking. The C++ way has an additional problem in that just inspecting the (x == y) does not give a clue what is actually happening, you have to go and find the particular overloaded operator==() that applies to verify what it really does.

There's a nasty bug lurking in the memcmp() implementation of operator==(). The layout of a struct XE "struct" , due to alignment, can have 'holes' in it. C++ does not guarantee those holes are assigned any values, and so two different struct instances can have the same value for each member, but compare different because the holes contain different garbage.

To address this, the operator==() can be implemented to do a memberwise compare. Unfortunately, this is unreliable because (1) if a member is added to the struct XE "struct" definition one may forget to add it to operator==(), and (2) floating point nan values compare unequal even if their bit XE "bit" patterns match.

There just is no robust solution in C++.

The D Way

D does it the obvious, straightforward way:

A x, y;

...

if (x == y)

 ...

Creating a new typedef XE "typedef" 'd type

The C++ Way

Typedef's in C++ are weak, that is, they really do not introduce a new type. The compiler XE "compiler" doesn't distinguish between a typedef XE "typedef" and its underlying type.

#define HANDLE_INIT
((Handle)(-1))

typedef XE "typedef" void XE "void" *Handle;

void XE "void" foo(void *);

void XE "void" bar(Handle);

Handle h = HANDLE_INIT;

foo(h);

// coding bug not caught

bar(h);

// ok

The C++ solution is to create a dummy struct XE "struct" whose sole purpose is to get type checking and overloading on the new type.

#define HANDLE_INIT
((void XE "void" *)(-1))

struct XE "struct" Handle

{ void XE "void" *ptr;

 Handle() { ptr = HANDLE_INIT; }
// default XE "default" initializer

 Handle(int i) { ptr = (void XE "void" *)i; }

 operator void XE "void" *() { return ptr; }
// conversion to underlying type

};

void XE "void" bar(Handle);

Handle h;

bar(h);

h = func();

if (h != HANDLE_INIT)

 ...

The D Way

No need for idiomatic constructions like the above. Just write:

typedef XE "typedef" void XE "void" *Handle = cast XE "cast" (void *)-1;

void XE "void" bar(Handle);

Handle h;

bar(h);

h = func();

if (h != Handle.init)

 ...

Note how a default XE "default" initializer can be supplied for the typedef XE "typedef" as a value of the underlying type.

Friends

The C++ Way

Sometimes two classes are tightly related but not by inheritance, but need to access each other's private XE "private" members XE "members" . This is done using friend declarations:

class XE "class" A

{

 private XE "private" :

int a;

 public XE "public" :

int foo(B *j);

friend class XE "class" B;

friend int abc(A *);

};

class XE "class" B

{

 private XE "private" :

int b;

 public XE "public" :

int bar(A *j);

friend class XE "class" A;

};

int A::foo(B *j) { return j->b; }

int B::bar(A *j) { return j->a; }

int abc(A *p) { return p->a; }

The D Way

In D, friend access is implicit in being a member of the same module. It makes sense that tightly related classes should be in the same module, so implicitly granting friend access to other module members XE "members" solves the problem neatly:

module X;

class XE "class" A

{

 private XE "private" :

static XE "static" int a;

 public XE "public" :

int foo(B j) { return j.b; }

}

class XE "class" B

{

 private XE "private" :

static XE "static" int b;

 public XE "public" :

int bar(A j) { return j.a; }

}

int abc(A p) { return p.a; }

The private XE "private" attribute prevents other modules from accessing the members XE "members" .

Operator overloading XE "Operator overloading"
The C++ Way

Given a struct XE "struct" that creates a new arithmetic data type, it's convenient to overload the comparison operators so it can be compared against integers:

struct XE "struct" A

{

virtual int operator < (int i);

virtual int operator <= (int i);

virtual int operator > (int i);

virtual int operator >= (int i);

static XE "static" int operator < (int i, A *a) { return a > i; }

static XE "static" int operator <= (int i, A *a) { return a >= i; }

static XE "static" int operator > (int i, A *a) { return a < i; }

static XE "static" int operator >= (int i, A *a) { return a <= i; }

};

A total of 8 functions are necessary, and all the latter 4 do is just rewrite the expression so the virtual functions can be used. Note the asymmetry between the virtual functions, which have (a < i) as the left operand, and the non-virtual static XE "static" function XE "function" necessary to handle (i < a) operations.

The D Way

D recognizes that the comparison operators are all fundamentally related to each other. So only one function XE "function" is necessary:

struct XE "struct" A

{

int cmp(int i);

}

The compiler XE "compiler" automatically interprets all the <, <=, > and >= operators in terms of the cmp function XE "function" , as well as handling the cases where the left operand is not an object XE "object" reference.

Similar sensible rules hold for other operator overloads, making using operator overloading in D much less tedious and less error prone. Far less code needs to be written to accomplish the same effect.

Namespace using declarations

The C++ Way

A using-declaration in C++ is used to bring a name from a namespace scope into the current scope:

namespace Foo

{

 int x;

}

using Foo::x;

The D Way

D uses modules instead of namespaces and #include files, and alias XE "alias" declarations take the place of using declarations:

---- Module Foo.d ------

module Foo;

int x;

---- Another module ----

import XE "import" Foo;

alias XE "alias" Foo.x x;

Alias is a much more flexible than the single purpose using declaration. Alias can be used to rename symbols, refer to template members XE "members" , refer to nested class XE "class" types, etc.

RAII XE "RAII" (Resource Acquisition Is Initialization XE "Initialization")

The C++ Way

In C++, resources like memory, etc., all need to be handled explicitly. Since destructors automatically get called when leaving a scope, RAII XE "RAII" is implemented by putting the resource release code into the destructor:

class XE "class" File

{ Handle *h;

 ~File()

 {

h->release();

 }

};

The D Way

The bulk of resource release problems are simply keeping track of and freeing memory. This is handled automatically in D by the garbage collector. The second common resources used are semaphores and locks, handled automatically with D's synchronized XE "synchronized" declarations and statements.

The few RAII XE "RAII" issues left are handled by auto XE "auto" classes. Auto classes get their destructors run when they go out of scope.

auto XE "auto" class XE "class" File

{ Handle h;

 ~this()

 {

h.release();

 }

}

void XE "void" test()

{

 if (...)

 { auto XE "auto" File f = new File();

...

 } // f.~this() gets run at closing brace, even if

 // scope was exited via a thrown exception

}

Dynamic Closures XE "Dynamic Closures"
The C++ Way

Consider a reusable container class XE "class" . In order to be reusable, it must support a way to apply arbitrary code to each element of the container. This is done by creating an apply function XE "function" that accepts a function pointer to which is passed each element of the container contents.

A generic context pointer is also needed, represented here by void XE "void" *p. The example here is of a trivial container class XE "class" that holds an array of int's, and a user of that container that computes the maximum of those int's.

struct XE "struct" Collection

{

 int array[10];

 void XE "void" apply(void *p, void (*fp)(void *, int))

 {

for (int i = 0; i < sizeof(array)/sizeof(array[0]); i++)

 fp(p, array[i]);

 }

};

void XE "void" comp_max(void *p, int i)

{

 int *pmax = (int *)p;

 if (i > *pmax)

*pmax = i;

}

void XE "void" func(Collection *c)

{

 int max = INT_MIN;

 c->apply(&max, comp_max);

}

The C++ way makes heavy use of pointers and casting. The casting is tedious, error prone, and loses all type safety.

The D Way

The D version makes use of delegates XE "delegates" to transmit context information for the apply function XE "function" , and nested functions both to capture context information and to improve locality.

class XE "class" Collection

{

 int[10] array;

 void XE "void" apply(void delegate XE "delegate" (int) fp)

 {

for (int i = 0; i < array.length; i++)

 fp(array[i]);

 }

}

void XE "void" func(Collection c)

{

 int max = int.min;

 void XE "void" comp_max(int i)

 {

if (i > max)

 max = i;

 }

 c.apply(comp_max);

}

Pointers XE "Pointers" are eliminated, as well as casting and generic pointers. The D version is fully type safe. An alternate method in D makes use of function XE "function" literals:

void XE "void" func(Collection c)

{

 int max = int.min;

 c.apply(delegate XE "delegate" (int i) { if (i > max) max = i; });

}

eliminating the need to create irrelevant function XE "function" names.

The C Preprocessor Versus D

Back when C was invented, compiler XE "compiler" technology was primitive. Installing a text macro preprocessor XE "preprocessor" onto the front end was a straightforward and easy way to add many powerful features. The increasing size XE "size" & complexity of programs have illustrated that these features come with many inherent problems. D doesn't have a preprocessor; but D provides a more scalable means to solve the same problems.

· Header Files

· #pragma once

· #pragma pack

· Macros

· Conditional Compilation

· Code Factoring

Header Files

The C Preprocessor Way

C and C++ rely heavilly on textual inclusion of header files. This frequently results in the compiler XE "compiler" having to recompile tens of thousands of lines of code over and over again for every source file XE "source file" , an obvious source of slow compile times. What header files are normally used for is more appropriately done doing a symbolic, rather than textual, insertion. This is done with the import XE "import" statement. Symbolic inclusion means the compiler just loads an already compiled symbol table. The needs for macro "wrappers" to prevent multiple #inclusion, funky #pragma once syntax, and incomprehensible fragile syntax for precompiled headers are simply unnecessary and irrelevant to D.

#include <stdio XE "stdio" .h>

The D Way

D uses symbolic imports:

import XE "import" stdio XE "stdio" ;

#pragma once

The C Preprocessor Way

C header files frequently need to be protected XE "protected" against being #include'd multiple times. To do it, a header file XE "header file" will contain the line:

#pragma once

or the more portable:

#ifndef __STDIO_INCLUDE

#define __STDIO_INCLUDE

... header file XE "header file" contents

#endif

The D Way

Completely unnecessary since D does a symbolic include of import XE "import" files; they only get imported once no matter how many times the import declaration appears.

#pragma pack

The C Preprocessor Way

This is used in C to adjust the alignment for structs.

The D Way

For D classes, there is no need to adjust the alignment (in fact, the compiler XE "compiler" is free to rearrange the data fields to get the optimum layout, much as the compiler will rearrange local variables on the stack frame). For D structs that get mapped onto externally defined data structures, there is a need, and it is handled with:

struct XE "struct" Foo

{

align XE "align" (4):
// use 4 byte XE "byte" alignment

...

}

Macros

Preprocessor macros XE "macros" add powerful features and flexibility to C. But they have a downside:

· Macros have no concept of scope; they are valid from the point of definition to the end of the source. They cut a swath across .h files, nested code, etc. When #include'ing tens of thousands of lines of macro definitions, it becomes problematicalto avoid inadvertent macro expansions.

· Macros are unknown to the debugger. Trying to debug XE "debug" a program with symbolic data is undermined by the debugger only knowing about macro expansions, not themacros themselves.

· Macros make it impossible to tokenize source code, as an earlier macro change can arbitrarilly redo tokens.

· The purely textual basis of macros XE "macros" leads to arbitrary and inconsistent usage, making code using macros error prone. (Some attempt to resolve this was introduced with templates in C++.)

· Macros are still used to make up for deficits in the language's expressive capabiltiy, such as for "wrappers" around header files.

Here's an enumeration of the common uses for macros XE "macros" , and the corresponding feature in D:

1. Defining literal XE "literal" constants:

The C Preprocessor Way

#define VALUE
5

The D Way

const XE "const" int VALUE = 5;

2. Creating a list of values or flags:

The C Preprocessor Way

int flags:

#define FLAG_X
0x1

#define FLAG_Y
0x2

#define FLAG_Z
0x4

...

flags |= FLAGS_X;

The D Way

enum XE "enum" FLAGS { X = 0x1, Y = 0x2, Z = 0x4 };

FLAGS flags;

...

flags |= FLAGS.X;

3. Distinguishing between ascii chars and wchar XE "wchar" chars:

The C Preprocessor Way

#if UNICODE

 #define dchar
wchar XE "wchar" _t

 #define TEXT(s)
L##s

#else

 #define dchar
char XE "char"

 #define TEXT(s)
s

#endif

...

dchar h[] = TEXT("hello");

The D Way

import XE "import" dchar;

// contains appropriate typedef XE "typedef" for dchar

...

dchar[] h = "hello";

D's optimizer will inline the function XE "function" , and will do the conversion of the string XE "string" constant at compile time.

4. Supporting legacy compilers:

The C Preprocessor Way

#if PROTOTYPES

#define P(p)
p

#else

#define P(p)
()

#endif

int func P((int x, int y));

The D Way

By making the D compiler XE "compiler" open source, it will largely avoid the problem of syntactical backwards compatibility.

5. Type aliasing:

The C Preprocessor Way

#define INT
int

The D Way

alias XE "alias" int INT;

6. Using one header file XE "header file" for both declaration and definition:

The C Preprocessor Way

#define EXTERN extern XE "extern"

#include "declations.h"

#undef EXTERN

#define EXTERN

#include "declations.h"

In declarations.h:

EXTERN int foo;

The D Way

The declaration and the definition are the same, so there is no need to muck with the storage class XE "class" to generate both a declaration and a definition from the same source.

7. Lightweight inline functions:

The C Preprocessor Way

#define X(i)
((i) = (i) / 3)

The D Way

int X(inout XE "inout" int i) { return i = i / 3; }

The compiler XE "compiler" optimizer will inline it; no efficiency is lost.

8. Assert function XE "function" file XE "file" and line number information:

The C Preprocessor Way

#define assert(e)
((e) || _assert(__LINE__, __FILE__))

The D Way

assert() is a built-in expression primitive. Giving the compiler XE "compiler" such knowledge of assert() also enables the optimizer to know about things like the _assert() function XE "function" never returns.

9. Setting function XE "function" calling conventions XE "calling conventions" :

The C Preprocessor Way

#ifndef _CRTAPI1

#define _CRTAPI1 __cdecl

#endif

#ifndef _CRTAPI2

#define _CRTAPI2 __cdecl

#endif

int _CRTAPI2 func();

The D Way

Calling conventions can be specified in blocks, so there's no need to change it for every function XE "function" :

extern XE "extern" (Windows)

{

 int onefunc();

 int anotherfunc();

}

10. Hiding __near or __far pointer wierdness:

The C Preprocessor Way

#define LPSTR
char XE "char" FAR *

The D Way

D doesn't support 16 bit XE "bit" code, mixed pointer sizes, and different kinds of pointers, and so the problem is just irrelevant.

11. Simple generic programming:

The C Preprocessor Way

Selecting which function XE "function" to use based on text substitution:

#ifdef UNICODE

int getValueW(wchar XE "wchar" _t *p);

#define getValue getValueW

#else

int getValueA(char XE "char" *p);

#define getValue getValueA

#endif

The D Way

D enables declarations of symbols that are aliases of other symbols:

version (UNICODE)

{

 int getValueW(wchar XE "wchar" [] p);

 alias XE "alias" getValueW getValue;

}

else

{

 int getValueA(char XE "char" [] p);

 alias XE "alias" getValueA getValue;

}

Conditional Compilation

The C Preprocessor Way

Conditional compilation XE "Conditional compilation" is a powerful feature of the C preprocessor XE "preprocessor" , but it has its downside:

· The preprocessor XE "preprocessor" has no concept of scope. #if/#endif can be interleaved with code in a completely unstructured and disorganized fashion, making things difficult to follow.

· Conditional compilation XE "Conditional compilation" triggers off of macros XE "macros" - macros that can conflict with identifiers used in the program.

· #if expressions are evaluated in subtly different ways than C expressions are.

· The preprocessor XE "preprocessor" language is fundamentally different in concept than C, for example, whitespace and line terminators mean things to the preprocessor that they do not in C.

The D Way

D supports conditional compilation:

1. Separating version specific functionality into separate modules.

2. The debug XE "debug" statement for enabling/disabling debug harnesses, extra printing, etc.

3. The version statement for dealing with multiple versions of the program generated from a single set of sources.

4. The if (0) statement.

5. The /+ +/ nesting comment can be used to comment out blocks of code.

Code Factoring

The C Preprocessor Way

It's common in a function XE "function" to have a repetitive sequence of code to be executed in multiple places. Performance XE "Performance" considerations preclude factoring it out into a separate function, so it is implemented as a macro. For example, consider this fragment from a byte XE "byte" code interpreter:

unsigned char XE "char" *ip;
// byte XE "byte" code instruction pointer

int *stack;

int spi;

// stack pointer

...

#define pop()

(stack[--spi])

#define push(i)

(stack[spi++] = (i))

while (1)

{

 switch XE "switch" (*ip++)

 {

case XE "case" ADD:

 op1 = pop();

 op2 = pop();

 result = op1 + op2;

 push(result);

 break XE "break" ;

case XE "case" SUB:

...

 }

}

This suffers from numerous problems:

1. The macros XE "macros" must evaluate to expressions and cannot declare any variables. Consider the difficulty of extending them to check for stack overflow/underflow.

2. The macros XE "macros" exist outside of the semantic symbol table, so remain in scope even outside of the function XE "function" they are declared in.

3. Parameters to macros XE "macros" are passed textually, not by value, meaning that the macro implementation needs to be careful to not use the parameter more than once, and must protect it with ().

4. Macros are invisible to the debugger, which sees only the expanded expressions.

The D Way

D neatly addresses this with nested functions:

ubyte XE "ubyte" * ip;

// byte XE "byte" code instruction pointer

int[] stack;

// operand stack

int spi;

// stack pointer

...

int pop() { return stack[--spi]; }

void XE "void" push(int i) { stack[spi++] = i; }

while (1)

{

 switch XE "switch" (*ip++)

 {

case XE "case" ADD:

 op1 = pop();

 op2 = pop();

 push(op1 + op2);

 break XE "break" ;

case XE "case" SUB:

...

 }

}

The problems addressed are:

1. The nested functions have available the full expressive power of D functions. The array accesses already are bounds checked (adjustable by compile time switch XE "switch").

2. Nested function XE "function" names are scoped just like any other name.

3. Parameters are passed by value, so need to worry about side effects in the parameter expressions.

4. Nested functions are visible to the debugger.

Additionally, nested functions can be inlined by the implementation resulting in the same high performance that the C macro version exhibits.

The D Style

The D Style is a set of style conventions for writing D programs. The D Style is not enforced by the compiler XE "compiler" , it is purely cosmetic and a matter of choice. Adhering to the D Style, however, will make it easier for others to work with your D code and easier for you to work with others' D code. The D Style can form the starting point for a D project style guide customized for your project team.

White Space XE "White Space"
· One statement per line.

· Two or more spaces per indentation level.

· Operators are separated by single spaces from their operands.

· Two blank lines separating function XE "function" bodies.

· One blank line separating variable declarations from statements in function XE "function" bodies.

Comments XE "Comments"
· Use // comments to document a single line:

·
 statement;
// comment

·
 statement;
// comment

· Use block comments to document a multiple line block of statements:

·
 /*

·
 * comment

·
 * comment

·
 */

·
 statement;

·
 statement;

· Use nesting comments to 'comment out' a piece of trial code:

·
/+++++

·
 /*

·
 * comment

·
 * comment

·
 */

·
 statement;

·
 statement;

·
 +++++/

Naming Conventions

General

Names formed by joining multiple works should have each word other than the first capitalized.

int myFunc();

Module

Module names are all lower case XE "case" .

C Modules XE "Modules"

Modules XE "Modules" that are interfaces to C functions go into the "c" package, for example:

import XE "import" c.stdio XE "stdio" ;

Module names should be all lower case XE "case" .

Class, Struct, Union, Enum names

are capitalized.

class XE "class" Foo;

class XE "class" FooAndBar;

Function names

Function names are not capitalized.

int done();

int doneProcessing();

Const names

Are in all caps.

Enum member names

Are in all caps.

Meaningless Type Aliases

Things like:

alias XE "alias" void XE "void" VOID;

alias XE "alias" int INT;

alias XE "alias" int* pint;

should be avoided.

Declaration XE "Declaration" Style

Since in D the declarations are left-associative, left justify them:

int[] x, y;
// makes it clear that x and y are the same type

int** p, q;
// makes it clear that p and q are the same type

to emphasize their relationship. Do not use the C style:

int []x, y;
// confusing since y is also an int[]

int **p, q;
// confusing since q is also an int**

Operator Overloading XE "Operator Overloading"
Operator overloading XE "Operator overloading" is a powerful tool to extend the basic types supported by the language. But being powerful, it has great potential for creating obfuscated code. In particular, the existing D operators have conventional meanings, such as '+' means 'add' and '<<' means 'shift left'. Overloading operator '+' with a meaning different from 'add' is arbitrarilly confusing and should be avoided.

Hungarian Notation

Just say no.

Example: wc

This program is the D version of the classic wc (wordcount) C program. It serves to demonstrate how to read files, do array slicing, and simple symbol table management with associative arrays XE "arrays" .

import XE "import" stdio XE "stdio" ;

import XE "import" file XE "file" ;

int main (char XE "char" [][] args)

{

 int w_total;

 int l_total;

 int c_total;

 int[char XE "char" []] dictionary;

 printf XE "printf" (" lines words bytes file XE "file" \n");

 for (int i = 1; i < args.length; ++i)

 {

char XE "char" [] input;

int w_cnt, l_cnt, c_cnt;

int inword;

int wstart;

input = File.read(args[i]);

for (int j = 0; j < input.length; j++)

{ char XE "char" c;

 c = input[j];

 if (c == "\n")

++l_cnt;

 if (c >= "0" && c <= "9")

 {

 }

 else if (c >= "a" && c <= "z" ||

c >= "A" && c <= "Z")

 {

if (!inword)

{

 wstart = j;

 inword = 1;

 ++w_cnt;

}

 }

 else if (inword)

 {
char XE "char" [] word = input[wstart .. j];

dictionary[word]++;

inword = 0;

 }

 ++c_cnt;

}

if (inword)

{ char XE "char" [] word = input[wstart .. input.length];

 dictionary[word]++;

}

printf XE "printf" ("%8lu%8lu%8lu %s\n", l_cnt, w_cnt, c_cnt, (char XE "char" *)args[i]);

l_total += l_cnt;

w_total += w_cnt;

c_total += c_cnt;

 }

 if (args.length > 2)

 {

printf XE "printf" ("--------------------------------------\n%8lu%8lu%8lu total",

 l_total, w_total, c_total);

 }

 printf XE "printf" ("--------------------------------------\n");

 char XE "char" [][] keys = dictionary.keys;

 for (int i = 0; i < keys.length; i++)

 {
char XE "char" [] word;

word = keys[i];

printf XE "printf" ("%3d %.*s\n", dictionary[word], word);

 }

 return 0;

}

Compiler for D Programming Language

This is the D compiler XE "compiler" for Win32 XE "Win32" .

Files

\dmd\bin\dmd.exe

D compiler XE "compiler" executable

\dmd\bin\shell.exe

Simple command line shell

\dmd\bin\sc.ini

Global compiler XE "compiler" settings

\dmd\lib\phobos.lib

D runtime library XE "library"

\dmd\src\phobos\

D runtime library XE "library" source

\dmd\src\dmd\

D compiler XE "compiler" front end source under dual (GPL and Artistic) license

\dmd\html\d\

Documentation

\dmd\samples\d\

Sample D programs

Requirements

· 32 bit XE "bit" Windows operating system XE "system"

· compiler" D compiler
 for Win32 XE "Win32"

· linker and utilities for Win32 XE "Win32"

Installation

Unzip the files in the root directory. It will create a \dmd directory with all the files in it. All the tools are command line tools, which means they are run from a console window. Create a console window in Windows XP by clicking on [Start][Command Prompt].

Example

Run:

\dmd\bin\shell all.sh

in the \dmd\samples\d directory for several small examples.

Compiler Arguments and Switches

dmd files... -switch XE "switch" ...

files...

	Extension
	File Type

	none XE "none"
	D source files

	.d
	D source files

	.obj
	Object files to link in

	.exe
	Name output executable file XE "file"

	.def
	module definition file XE "file"

	.res
	resource file XE "file"

-c

compile only, do not link

-d

allow deprecated XE "deprecated" features

-debug XE "debug"

compile in debug XE "debug" code

-debug XE "debug" =level

compile in debug XE "debug" code <= level

-debug XE "debug" =ident

compile in debug XE "debug" code identified by ident

-g

add symbolic debug XE "debug" info

-gt

add trace profiling hooks

-inline

inline expand functions

-Ipath

where to look for imports. path XE "path" is a ; separated list of paths. Multiple -I's can be used, and the paths are searched in the same order.

-Llinkerflag

pass linkerflag to the linker, for example, /ma/li

-O

optimize

-oobjdir

write object XE "object" files to directory objdir instead of to the current directory

-release

compile release version

-unittest

compile in unittest code

-v

verbose

-version=level

compile in version code >= level

-version=ident

compile in version code identified by ident

Linking

Linking is done directly by the dmd compiler XE "compiler" after a successful compile. To prevent dmd from running the linker, use the -c switch XE "switch" .

The programs must be linked with the D runtime library XE "library" phobos.lib, followed by the C runtime library snn.lib. This is done automatically as long as the directories for the libraries are on the LIB environment variable path XE "path" . A typical way to set LIB would be:

set LIB=\dmd\lib;\dm\lib

Environment Variables XE "Variables"
The D compiler XE "compiler" dmd uses the following environment variables:

DFLAGS

The value of DFLAGS is treated as if it were appended to the command line to dmd.exe.

LIB

The linker uses LIB to search for library XE "library" files. For D, it will normally be set to:

set LIB=\dmd\lib;\dm\lib

LINKCMD

dmd normally runs the linker by looking for link.exe along the PATH. To use a specific linker instead, set the LINKCMD environment variable to it. For example:

set LINKCMD=\dm\bin\link

PATH

If the linker is not found in the same directory as dmd.exe is in, the PATH is searched for it. Note: other linkers named link.exe will likely not work. Make sure the Digital Mars link.exe is found first in the PATH before other link.exe's, or use LINKCMD to specifically identify which linker to use.

SC.INI Initialization XE "Initialization" File

dmd will look for the initialization file XE "file" sc.ini in the same directory dmd.exe resides in. If found, environment variable settings in the file will override XE "override" any existing settings. This is handy to make dmd independent of programs with conflicting use of environment variables.

Environment variables follow the [Environment] section heading, in name=value pairs. Comments XE "Comments" are lines that start with ;. For example:

; sc.ini file XE "file" for dmd

; Names enclosed by %% are searched for in the existing environemnt

; and inserted. The special name %@P% is replaced with the path XE "path"

; to this file XE "file" .

[Environment]

LIB="%@P%\..\lib";\dm\lib

DFLAGS="-I%@P%\..\src\phobos"

LINKCMD="%@P%\..\..\dm\bin"

Bugs

These are some of the major bugs XE "bugs" :

· The compiler XE "compiler" quits on the first error, and sometimes gets the line number wrong.

· The phobos D runtime library XE "library" is inadequate.

· Need to write a tool to convert C .h files into D imports.

· Array op= operations are not implemented.

· Property gettor/settor not implemented.

· In preconditions and out postconditions for member functions XE "member functions" are not inherited.

· It cannot be run from the IDDE.

Feedback

We welcome all feedback - kudos, flames, bugs XE "bugs" , suggestions, hints, and most especially donated code!

 Acknowledgements

The following people have contributed to the D language project; with ideas, code, expertise, marketing, inspiration and moral support.

Bruce Eckel, Eric Engstrom, Jan Knepper, Lubomir Litchev, Pavel Minayev, Paul Nash, Pat Nelson, Burton Radons, Tim Rentsch, Fabio Riccardi, Bob Taniguchi, John Whited, Peter Zatloukal

INDEX

6
64 bit architectures 14

A
abstract 29, 44, 120, 165

alias 29, 36, 37, 38, 40, 107, 108, 204, 210, 212, 216

Aliasing 37, 38

align 29, 45, 133, 134, 161, 189, 208

Align 45

Allocators 92

argc 17

argv 17

arrays 11, 16, 17, 18, 20, 36, 53, 54, 57, 58, 59, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 124, 125, 131, 144, 148, 177, 181, 184, 185, 191, 196, 217

ASCII 23, 39, 147

asm 29, 70, 133, 134, 135, 137

Assembler 18, 133

assert 19, 20, 29, 51, 60, 91, 92, 106, 108, 110, 111, 112, 113, 129, 130, 146, 183

Associative Arrays 16, 80

Attributes 19, 44

auto 29, 44, 47, 93, 130, 205

B
Basic 14, 39, 151

BigEndian 114

binary digits 27

bit 14, 16, 21, 23, 29, 39, 40, 53, 59, 76, 79, 83, 87, 105, 114, 122, 123, 134, 143, 144, 155, 156, 160, 165, 168, 173, 179, 181, 182, 201, 211, 219

Bit 14, 16, 53, 79

Bit fields 14

Block 25, 61, 62

body 29, 62, 68, 107, 112, 113, 115, 116, 134, 173

bounds checking 20, 72, 78, 177

break 29, 62, 64, 65, 66, 67, 77, 78, 175, 180, 187, 188, 213

Break 61, 67, 187

bugs 12, 13, 14, 19, 20, 63, 97, 122, 150, 188, 189, 191, 221

byte 29, 39, 40, 137, 143, 146, 152, 154, 160, 161, 165, 166, 167, 168, 181, 189, 208, 213

Byte Order Marks 23

C
C API 14, 20, 21, 124

calling conventions 12, 45, 70, 146, 173, 211

case 20, 23, 25, 29, 34, 45, 65, 66, 84, 112, 120, 125, 128, 134, 153, 161, 162, 167, 170, 175, 188, 213, 214, 215, 216

cast 29, 42, 58, 59, 79, 80, 84, 125, 126, 194, 202

Cast 58

catch 19, 29, 65, 69, 78, 79, 120, 174, 178

cdouble 29, 39

cent 29, 39

cfloat 29, 39

char 17, 29, 36, 39, 47, 56, 58, 60, 65, 66, 72, 77, 79, 80, 81, 82, 92, 98, 109, 110, 120, 125, 126, 142, 143, 144, 152, 153, 154, 159, 160, 161, 162, 163, 164, 166, 167, 168, 169, 170, 171, 172, 174, 181, 182, 185, 188, 189, 190, 192, 193, 195, 197, 198, 209, 211, 212, 213, 217, 218

class 13, 15, 16, 17, 19, 20, 29, 35, 40, 41, 46, 47, 53, 54, 58, 59, 69, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 101, 103, 104, 105, 106, 109, 110, 113, 117, 120, 127, 128, 129, 130, 144, 145, 147, 148, 149, 150, 151, 154, 160, 163, 165, 168, 169, 171, 176, 177, 198, 199, 200, 202, 203, 204, 205, 206, 210, 216

closures 17, 177

COM Programming 176

Comments 24, 25, 215, 221

comparisons 53, 55, 183, 194, 201

Compatibility 20, 142, 143, 178

compiler 11, 12, 13, 14, 15, 17, 19, 21, 31, 45, 46, 51, 60, 66, 70, 72, 87, 90, 92, 97, 98, 111, 112, 114, 115, 116, 131, 133, 134, 142, 144, 146, 147, 150, 151, 152, 155, 174, 175, 179, 183, 189, 193, 201, 204, 207, 208, 210, 211, 215, 219, 220, 221

compiler technology 12

complex 13, 14, 15, 16, 17, 28, 37, 39, 53, 57, 63, 97, 131, 144, 182, 194

Concatenation 74, 75, 180, 185

Conditional compilation 13, 178, 212

const 29, 36, 44, 46, 84, 129, 142, 157, 161, 162, 169, 196, 201, 208

constructor 35, 88, 89, 90, 91, 127, 128, 168, 171, 174, 200

continue 29, 62, 64, 66, 67, 146, 180, 187

Continue 61, 66

Contracts 19, 111

conv 151, 152

Conversions 40

creal 29, 39, 166, 167

ctype 151, 152

D
date 91, 111, 151, 153, 154

deallocation 18, 122, 123, 124

Deallocators 93

debug 12, 19, 20, 29, 114, 115, 116, 117, 122, 147, 208, 212, 220

Declaration 15, 33, 34, 36, 61, 63, 64, 107, 216

Deduction 109

default 29, 37, 42, 45, 53, 58, 63, 65, 77, 78, 83, 86, 88, 89, 90, 97, 98, 116, 120, 121, 125, 128, 154, 162, 176, 188, 189, 193, 194, 202

Definition 15, 17, 174, 175

delegate 29, 41, 59, 60, 101, 171, 206

delegates 17, 41, 101, 177, 206

delete 18, 29, 50, 58, 80, 90, 93, 128, 129, 130

deprecated 21, 29, 36, 44, 46, 150, 220

Deprecation 21

dereferencing 14

Design by Contract 19, 60, 150, 178, 179

Destruction 35

DigitalMars 114, 152

digraphs 13, 24

DLL 18, 46, 86, 123, 142, 143, 174, 175, 176

DMDScript 14

do 29

Do 64

double 26, 28, 29, 39, 40, 46, 76, 83, 98, 109, 110, 131, 134, 137, 143, 144, 160, 161, 166, 167, 178, 179, 181, 182, 183

dup 76

Dynamic Arrays 72

Dynamic Closures 17, 101, 199, 205

E
E 84, 109, 157

else 29

End of File 24

End of Line 24

enum 29, 40, 65, 79, 84, 85, 152, 180, 188, 192, 193, 209

Error Handling 119, 120, 150

Evaluation Order 51

Exception handling 12

Exception Handling 19, 21

export 29, 44, 46, 173

Expressions 49

extern 16, 29, 45, 142, 173, 174, 176, 210, 211

F
false 29, 50, 52, 53, 59, 60, 63, 64, 116, 175, 183

Fields 87

file 15, 21, 24, 31, 32, 33, 34, 47, 81, 83, 119, 147, 150, 151, 154, 160, 162, 166, 167, 168, 169, 192, 210, 217, 219, 220, 221

final 29, 36, 44, 92

finally 19, 29, 66, 67, 68, 69, 120, 178

float 28, 29, 39, 40, 42, 55, 88, 131, 134, 137, 143, 160, 161, 166, 167, 182, 183

Floating Literals 28

Floating Point 42, 131, 132, 180, 182

for 29

For 64

Forward declarations 13

forward references 16

function 12, 13, 16, 17, 19, 20, 29, 35, 36, 37, 39, 41, 45, 46, 47, 59, 60, 62, 63, 67, 70, 80, 87, 88, 89, 90, 91, 92, 93, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 111, 112, 113, 119, 120, 121, 125, 130, 131, 133, 134, 142, 143, 146, 148, 155, 160, 163, 169, 171, 172, 173, 174, 177, 179, 186, 187, 190, 194, 195, 197, 198, 204, 205, 206, 209, 210, 211, 213, 214, 215

Function Literals 17, 59

function overloading 16, 37, 92, 97

Function Overloading 97

G
Garbage Collection 18, 122, 123, 177, 179

gc 77, 126, 127, 128, 129, 130, 143, 151, 154, 173, 174, 175

goto 29, 62, 67, 68, 89, 120, 133, 187

Goto 67

H
header file 15, 207, 210

Hexadecimal 27, 28

HTML 147

I
Identifiers 25

Identity Expressions 53

idouble 28, 29, 39

IEEE 754 57, 132

if 29

If 63

ifloat 28, 29, 39

Imaginary 131, 144, 178, 182

import 15, 21, 30, 34, 35, 37, 38, 81, 108, 109, 128, 129, 130, 142, 146, 147, 150, 155, 156, 173, 174, 176, 186, 204, 207, 208, 209, 216, 217

in 30

Inheritance 113, 177

Initialization 12, 47, 78, 83, 85, 125, 130, 199, 204, 221

Inline Functions 97

inout 30, 47, 72, 97, 98, 112, 210

Inout 17

Instantiation 108

int 29

Integer Literals 27

interface 11, 17, 21, 30, 94, 95, 96, 124, 143, 145, 150, 151, 175, 176

intrinsic 19, 151, 155, 156

invariant 20, 30, 89, 91

ireal 28, 29, 39, 166, 167

J
Java 12, 14, 59, 150, 177

K
Keywords 29

L
legacy code 13, 21

length 76

lexical analysis 23

lexical analyzer 14, 23, 24, 31

library 18, 19, 21, 46, 120, 121, 123, 126, 128, 132, 142, 150, 174, 175, 176, 195, 219, 220, 221

Link compatibility 13

lint 14

linux 38, 39, 114

literal 26, 28, 131, 134, 144, 208

LittleEndian 114

LN10 157

LN2 157

LOG10E 157

LOG2 157

LOG2E 157

LOG2T 157

long 29

M
M_2_SQRTPI 157

macros 12, 13, 19, 20, 84, 190, 208, 212, 213

make 12

math 112, 151, 157, 181, 182, 183

member functions 13, 15, 17, 41, 59, 94, 97, 100, 103, 179, 221

members 13, 20, 21, 41, 45, 46, 47, 79, 83, 84, 86, 87, 90, 100, 107, 108, 127, 128, 137, 144, 171, 189, 191, 202, 203, 204

memory allocation 18, 122, 126, 178, 185

Modules 15, 33, 34, 177, 216

Multiple inheritance 13

N
Namespaces 13

NaN 14, 42

Nested Functions 17, 98

new 29

New 58

newsgroup 2

none 24, 65, 114, 219

null 29, 50, 53, 54, 58, 59, 78, 89, 92, 97, 106, 123, 124, 128, 129, 162, 174, 185

O
object 12, 13, 14, 15, 19, 20, 21, 41, 47, 54, 59, 68, 69, 86, 87, 89, 90, 91, 103, 105, 106, 122, 123, 124, 126, 127, 130, 143, 148, 151, 160, 163, 176, 178, 180, 204, 220

object oriented programming 14

Octal 27

Operator overloading 12, 177, 199, 203, 216

Operator Overloading 15, 103, 216

optimization 12

optimizer settings 16

out 30

out of memory 20, 120, 154, 155, 184, 185

outbuffer 151, 160

OutOfMemoryException 89

override 30, 44, 46, 47, 106, 171, 221

P
path 33, 73, 89, 151, 161, 162, 220, 221

Performance 18, 178, 213

Perl 14

Phases of Compilation 23

Phobos 126, 150, 176

PI 157

Pointer Conversions 40

Pointers 36, 39, 72, 78, 101, 123, 124, 206

Pragmas 23, 31

preprocessor 12, 13, 14, 21, 178, 180, 207, 212

printf 21, 22, 80, 81, 82, 144, 147, 151, 155, 156, 160, 161, 167, 172, 186, 217, 218

private 30, 44, 46, 47, 86, 202, 203

process 15, 19, 23, 113, 120, 151, 162

Productivity 15

programming style 14

Project Management 21

Properties 42, 76, 81, 85

protected 30, 44, 46, 207

Protection Attribute 46

public 16, 30, 44, 46, 91, 202, 203

Python 14

R
RAII 12, 13, 18, 47, 125, 129, 130, 178, 199, 204, 205

random 151, 162

real 30

Real Time 125, 126

Reference Counting 125, 127

regexp 151, 163

Relational Expressions 54

Reliability 19, 178

return 29

Return 67

reverse 76

Rounding 132

runtime checking 19

Runtime Library 150

Runtime Type Identification 12

S
semantic analyzer 14

Shift 56

short 29

size 14, 39, 42, 57, 76, 77, 79, 81, 85, 92, 93, 125, 128, 137, 146, 154, 156, 161, 164, 165, 166, 167, 168, 169, 180, 181, 182, 184, 185, 207

Slicing 73, 74

Smalltalk 12

sort 76

source file 15, 23, 31, 33, 34, 116, 147, 186, 207

Specialization 110

SQRT1_2 157

SQRT2 157

Statements 19, 61, 62, 180, 187

static 15, 18, 30, 35, 36, 41, 44, 46, 47, 53, 54, 59, 60, 73, 75, 76, 79, 83, 86, 88, 89, 90, 91, 92, 97, 100, 101, 110, 123, 124, 127, 128, 129, 130, 143, 148, 149, 154, 160, 172, 188, 197, 203, 204

Static Arrays 72

Static Construction 35

static members 15, 83, 110, 148, 149

stdint 151, 164

stdio 21, 34, 81, 147, 151, 168, 172, 186, 207, 216, 217

stream 151, 165, 166, 167, 168, 169

string 18, 26, 37, 38, 75, 79, 80, 121, 125, 134, 142, 144, 151, 152, 153, 154, 160, 161, 162, 163, 164, 166, 167, 168, 169, 170, 171, 185, 188, 192, 193, 194, 195, 197, 201, 209

String Literals 25, 180, 192

Strings 18, 79, 80, 125, 142, 147, 188

struct 13, 18, 21, 29, 40, 42, 45, 53, 59, 83, 87, 100, 101, 103, 104, 105, 106, 137, 144, 179, 180, 181, 188, 189, 190, 191, 193, 194, 195, 197, 200, 201, 202, 203, 204, 205, 208

Suggestions 2

super 29, 33, 50, 59, 68, 86, 87, 88, 89, 90, 96, 109, 113, 176, 200

switch 20, 21, 29, 46, 65, 66, 67, 78, 92, 115, 116, 144, 174, 187, 188, 189, 192, 213, 214, 219, 220

Synchronization 19

Synchronize 68

synchronized 29, 36, 68, 69, 127, 205

system 11, 12, 15, 18, 21, 34, 35, 37, 45, 83, 94, 114, 119, 120, 121, 122, 123, 142, 146, 150, 151, 162, 167, 168, 171, 174, 176, 192, 219

T
Templates 12, 16, 107, 110, 178

testing 14, 19, 106, 122, 178

this 30, 59

thread 20, 68, 123, 151, 154, 155, 171, 172

throw 30, 67, 69, 91, 92, 128, 129, 130, 155, 167

Throw 69

Tokens 30

Trigraphs 13

true 30

try 30

Try 69

typedef 16, 30, 36, 37, 40, 42, 153, 171, 180, 188, 193, 194, 199, 201, 202, 209

typedefs 16, 177, 179

U
ubyte 30, 39, 40, 143, 152, 157, 161, 166, 167, 168, 181, 213

ucent 30, 39

uint 28, 30, 39, 45, 92, 128, 129, 130, 143, 152, 153, 154, 155, 156, 157, 160, 161, 162, 164, 165, 166, 167, 168, 169, 171, 181, 182

ulong 28, 30, 39, 143, 152, 161, 166, 167, 168, 169, 181, 182

Unary 57, 103

Unicode 13

union 30, 40, 83, 87, 124, 189, 190, 191

Unit Tests 19, 92

ushort 30, 39, 40, 143, 152, 157, 161, 166, 167, 181

UTF-16BE 23, 24

UTF-16LE 23, 24

UTF-32BE 23, 24

UTF-32LE 23, 24

UTF-8 23, 24

V
Variables 98, 221

version 30

Version 61, 114, 115, 116, 117

Versioning 21

Virtual Functions 97

virtual member functions 13, 148

virtual table 33

void 30, 37, 39, 45, 46, 52, 58, 59, 60, 62, 67, 75, 87, 92, 93, 94, 98, 99, 100, 101, 108, 109, 110, 112, 127, 128, 129, 130, 133, 142, 143, 144, 148, 154, 155, 161, 162, 165, 166, 167, 168, 169, 171, 172, 173, 174, 186, 187, 188, 193, 194, 196, 197, 198, 201, 202, 205, 206, 213, 216

volatile 30, 69, 142, 196

Volatile 69

W
warning levels 14

Warnings 21

wchar 26, 30, 39, 65, 66, 79, 80, 98, 143, 146, 161, 166, 167, 181, 182, 185, 192, 193, 209, 211, 212

while 30

While 63

White Space 24, 215

wide char 23

Win32 37, 39, 45, 94, 114, 127, 133, 173, 174, 176, 219

Windows API 45, 173, 176

with 30

With 68

X
X86 114, 116

Z
zip 151, 172

PAGE
4

